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Introduction

The three suppléments by Poincaré, written in 1880, are published here for the first time. They
document his discovery of automorphic functions and the important role non-Euclidean geom-
etry can play in complex function theory. They precede his published papers of 1881 on the
subject, and they show in detail how he made and exploited a succession of insights into what
was to become his first major contribution to mathematics.

To assist in the understanding of these papers we first indicate something of Poincaré’s
life at the time, and describe the context in which he was working. Then we summarize and
analyze the mathematical content of the suppléments, focusing on what is new and significant
in what he did. We indicate also how these discoveries made their way into the many papers
that Poincaré was to publish on this subject. Lastly, we indicate briefly how these suppléments
came to be rediscovered, and conjecture how they were lost.

The context

Poincaré celebrated his twenty-sixth birthday on April 29, 1880. At that time he was Chargé de
cours d’Analyse mathématique at the Caen Faculty of Science. After graduating second in his
class at the Ecole polytechnigue in 1875 (poor marks in descriptive geometry cost him the top
position), Poincaré went on to the Ecole des mines in Paris. This was the normal career path
for the top graduates of Polytechnique; in Poincaré’s class only the top three students made it
into Mines (which must have added spice to the competition for grades). Once Poincaré was
enrolled in mining school, his mentor Ossian Bonnet intervened with the school administration
on his behalf; he asked that Poincaré be allowed to skip some required courses in docimasy in
favor of lectures in mathematics across the street at the university he taught at, the Sorbonne.
When the director of Mines personally informed Poincaré that the study of mathematics was
incompatible with his status as a student engineer, he accepted the decision with magnanimity.

A path leading from the Ecole polytechnique and the Ecole des mines to a university teach-
ing career had been worn by some of the professors Poincaré most admired, including Camille
Jordan and Alfred Cornu. It is unlikely that he ever considered a career as a mine inspector,



but that is exactly what he became once he obtained the diploma from Mines. Not that this
was a shameful occupation. The mine inspector in late nineteenth century France was a highly
esteemed individual, one who jeopardized his life in the service of the country. The dangerous
nature of this occupation may be judged from the fact that neither of Poincare’s two comrades
from Polytechnique attained the age of thirty.

For all that he impressed everyone who met him with his quickness of mind, Poincaré was
not a prodigy. Nor was he particularly well read, preferring to make his own way through
contemporary mathematics. By 1880, he still had only two short publications to his name,
although in 1878 he had written a doctoral thesis that Darboux, one of his examiners, said
contained the material for several good theses (Darboux et al. 1916, xxi). Rather more sharply,
Darboux also observed that the methods in the thesis often fell short of rigorous proof, and
had urged Poincaré to tighten it up. Instead Poincaré replied that there were other ideas he
would rather work on, and in the event, the thesis was not published (until it appeared in the
first volume of his (Euvres, in 1928). Nominally devoted to extending Kovalevskaya’s theorem
about partial differential equations in the complex domain, where it foreshadowed part of the
analysis of celestial mechanics he later gave in his prize-winning memoir of 1889, the thesis
also contained important results on lacunary series and algebroid functions, which came to play
an important part in the study of complex functions of several variables. (For a rich account of
the writing of this memoir, see Barrow-Green |1997).

The thesis permitted Poincaré to give a course in analysis at the Faculté des sciences at
Caen; he was officially released from his duties as a mine inspector on December 1, 1879.
He was by then thinking about the global theory of real differential equations which he was
to develop and incorporate into his celestial mechanics (see Gilain 1977, [1991). But he was
also engaged with the theory of differential equations in the complex domain, the subject of his
paper of 1878. The theory was then the central topic in the study of ordinary differential equa-
tions (see, for example, Gray [2000). The French authorities on the subject had been Briot and
Bouquet, but more recently, leadership had passed to a student of Kummer’s, much influenced
by Weierstrass, the German Lazarus Immanuel Fuchs. Fuchs had succeeded in 1866 in clas-
sifying those ordinary linear differential equations whose solutions have fixed singular points
at which they have, at worst, finite poles. This is a large class of differential equations which
contains the celebrated hypergeometric equation. Fuchs’s work on this topic formed the natural
generalization of Riemann’s paper on the so-called P-functions. Since then, Fuchs had solved
a number of related problems, including some concerned with elliptic integrals and modular
functions by means of his theory. This brought him into contact with Hermite.

Hermite’s contact with Fuchs was an important route for German ideas to reach France.
He was not comfortable with the methods of Riemann, and barely mentioned them in either his
Cours d’analyse (1873) or in his later course (1881). But if, unhappily for French mathematics,
he shared with Fuchs a failure to understand Riemann’s more profound ideas, his appreciation
of Fuchs’s work was to benefit Poincaré. Hermite was the most influential French mathemati-
cian of his generation, alongside Bertrand. Bertrand occupied more prestigious positions, but
Hermite’s research carried greater weight. Between them they could more-or-less decide who
was to get the call to Paris and who was to languish in the provinces. Hermite’s failure with Rie-
mann goes some way in explaining why Riemann’s ideas had to wait for Picard and Poincaré
in the 1880s before they took off in France, well after their adoption by the leading Italian
mathematicians.

One way a mathematician like Hermite exerted his influence was through the prize compe-
titions run by the Académie des sciences in Paris. It was the custom throughout the nineteenth
century for the Académie to announce various prizes in mathematics. Typically, a title would be



announced, with a panel of judges, and a cut-off date some two years hence. A system of sealed
envelopes and mottoes was used to try to ensure anonymity. The entries would be judged, and
perhaps a prize would be awarded. But it might well happen that no entry was thought worthy.
In that case the essay might be re-announced. On occasion, the prize would go to someone for
their work, whether or not it fit the title—this was the case when Abel and Jacobi won the prize
in 1830. To avoid this sort of embarrassment, the essays would sometimes be devised with a
likely winner in mind, as was the case when Kovalevskaya won the Prix Bordin (see Cooke
1984)). In 1878, Hermite took the opportunity to set an essay on Fuchs’s work that he may well
have thought would catch the interest of Poincaré, and of course Poincaré had been Hermite’s
student at the Ecole polytechnique.

A prize competition was thus announced by the Academy in 1878. The question set was
“To improve in some important way the theory of linear differential equations in a single inde-
pendent variable” (“Perfectionner en quelque point important la théorie des équations différen-
tielles linéaires a une seule variable indépendante”). The closing date was 1880; and the panel
of judges comprised Bertrand, Bonnet, Puiseux and Bouquet, with Hermite as rapporteur.

On March 22, 1880, Poincaré submitted a memoir on the real theory, which he withdrew
on June 14, before the examiners could report on it. It would seem that his imagination had
been captured by the very different complex case, which he wrote up and submitted on May
29, 1880.

This essay was only to be published posthumously, in Acta Mathematica 39 (Poincaré |1923))
and in the first volume of his (Euvres (Appell & Drach|1928|, 336-372), along with his doctoral
thesis.

The next day he wrote the first of several letters to Fuchs. Shortly afterwards he had the
first breakthrough into the topic of automorphic functions, and wrote the first of the three sup-
pléments published in this volume. It is, of course, this connection through Hermite to Fuchs,
and Poincaré’s patchy reading, that explains why Poincaré chose to call a large class of auto-
morphic functions “Fuchsian”. To understand the chain of thought that led to the prize essay
and the suppléments, it is best to review briefly Fuchs’s work and then the original essay.

The work of Fuchs

In a series of papers in 1880 (continuing into 1881, this summary follows Fuchs [1880c |1904,
191-212;|18804a, 1880b, |1906, 213-218), Fuchs studied the differential equation
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where P and Q are rational functions of a complex variable z. He took functions f(z) and
¢(z) as a basis of solutions for it, and sought to generalize Jacobi inversion from the context of
integrals to differential equations by considering the equations

/: f(z)dz + /;2 f(2)dz = u,
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as defining functions of #; and u,:

Z1 = Fl(”l’ uz), Zy = Fz(ula u2)-



By varying the paths of integration he obtained these equations for them:
Fi(aniuy + anuy + arc, ey + s +oxc) = Fi(uy, uz), i =1,2

where the integers «;; describe the analytic continuation of #; and u, along paths that cross the
cuts joining the singularities of (1) to co; oy and o, are analogous to the periods of an elliptic
integral.

Fuchs wished to ensure that the four derivatives g Zi are holomorphic functions of z; and
Z, near z; = da, zy = b, where a and b are arbltrary distinct points, and that every value
(z1, z2) € C can be attained with finite (z;, u,) = C. For this he said it is necessary and
sufficient that at each finite singular point the roots of the associated indicial equation satisfy
certain simple conditions (roughly speaking, that they be rational numbers of a precise kind).
With increasing obscurity, he then argued that extra conditions on the roots of the indicial
equation ensured that the equation

f(2)

o0
defines z as a single-valued function of ¢ and that the equation f(z;) —¢(z1) — f(z1)¢(z;) has
only the trivial solution z; = z;. In particular, he stipulated that the solutions to the differential
equation may not involve logarithmic terms. In an even more special case the number of finite
singular points can not be greater than six, and he gave an example where six finite singular
points occur. The functions

z1 = Fi(uy,up), z:= Fy(uq, up)

are then necessarily hyperelliptic, but generally they will not even be Abelian functions, since
the differential equation will not be algebraically integrable.

Fuchs’s proofs of these assertions proceeded by a case-by-case analysis of each kind of
singularity that could occur in terms of the local power series expansions of the functions. As
we shall see, Poincaré was to point out that the analysis rapidly becomes confusing and was
incomplete, in any case. The condition that no logarithmic terms appear in the solutions to the
differential equation even though Fuchs allowed that roots of an indicial equation may differ
by 1, an integer, is a strong restriction on the kind of branching that can occur. Fuchs seems to
have assumed, or perhaps was only interested in, the case when ¢ takes every value in C, not
merely in some disc.

As an example of the case when there are six singular points, Fuchs adduced the hyperel-
liptic integrals

1= f £(2) dZ Y2 = f h(z) dz

Vo (2) Vo (2)
where ¢(z) = (z —ay)...(z — ag) and oo is not a singular point. In this case g(z) and

h(z) are linearly independent polynomials of degree 0 or 1 (say g(z) := 1, h(z) := z). Now
zy = Fi(uy, uy), z2 = F>(uy, u,) are hyperelliptic functions of the first kind.

Fuchs was chiefly concerned to study the inversion of equations (2) and was only slightly
interested in the function { = % His obscure papers rather confused the two problems, but
they were soon to be disentangled, in the course of a correspondence that the young Poincaré
began once he had submitted his essay for the prize competition.

The prize essay

In the essay Poincaré focused on the question of when the quotient z = A Ex; of two independent
solution of a differential equation d— = (Qy defines, by inversion, a meromorphic function
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x of z. He found Fuchs’s conditions were neither necessary nor sufficient, because the nature
of the domain of definition of the inverse function had not been adequately considered. It
was necessary and sufficient for x to be meromorphic on some domain that the roots of the
indicial equation at each singular point, including infinity, differ by an aliquot part of unity (i.e.
p1 — p2 = 1/n, for some positive integer n). If the domain is to be the whole complex sphere
then this condition is still necessary, but it is no longer sufficient. Finding that Fuchs’s methods
did not enable him to analyze the question very well, as special cases began to proliferate, he
sought to give it a more profound study, working upwards from the simplest cases. He began
with an example of Fuchs’s where the differential equation has two finite singular points and
certain exponent differences. These forced x to be a meromorphic single-valued function of z
mapping a parallelogram composed of eight equilateral triangles onto the complex sphere, and
z = oo is its only singular point, so x is an elliptic function. The differential equation, Poincaré
showed, has in fact an algebraic solution and a non-algebraic solution. This result agrees with
Fuchs’s theory.

Poincaré next investigated when a doubly-periodic function can give rise to a second-order
linear differential equation, and found after a lengthy argument that there was always such
an equation having rational coefficients for which the solution was a doubly periodic function
having two poles. If furthermore the periods /2 and K were such that

2ir = (modh, K)

then x would be a monodromic function of z with period 2ir.

After a further argument Poincaré concluded (79) that there are cases when one solution of
the original differential equation is algebraic, and then Fuchs’s theory was correct. However,
there are also cases when the differential equation has four singular points and elliptic functions
are involved; then extra conditions are needed.

However, it might be that the domain of x failed to be the whole z-sphere. Poincaré gave
an example to show that this could happen even when the differential equation has only two
finite singular points. If the exponent differences are ; and 5 at the finite points and ¢ at oo,
and the finite singular points are joined to co by cuts, then as long as x crosses no cuts z stays
within the quadrilateral «O«’y (see Figure 1). The image of the upper and lower half planes
are triangles that form a quadrilateral joined along the image of the line joining the singular
points.

T

Figure 1

As x is conducted about in its plane, the values of z lie inside the circle HH’. All the
images of the upper and lower half planes taken together are quadrilaterals Poincaré described
as ‘mixtiligne’, with circular-arc sides meeting the circle HH’ at right angles. For a range of



similar differential equations this geometric picture is quite general: curvilinear polygons are
obtained with non-re-entrant angles and circular-arc sides orthogonal to the boundary circle.
They fill out the domain of the function x in |z| < OH, and Poincaré then investigated whether
x is meromorphic. This reduces to showing that, as x is continued analytically, the polygons do
not overlap. This does not occur if the angles satisfy conditions derived from Fuchs’s theory,
unless the overlap is in the form of an annular region:

However, if the angles are not re-entrant, this cannot happen, and so x is meromorphic.

The correspondence between Poincaré and Fuchs

The essay out of the way, Poincaré could turn to some of the problems that had occurred to him
while reading Fuchs’s work. One of his first questions to Fuchs concerned the nature of the
inverse function (z = z({) in Fuchs’s notation)ﬂ Fuchs had claimed that z is always a mero-
morphic function of { = A gg, whether z is an ordinary or a singular point of the differential
equation. He showed, in fact, that z is finite at ordinary points and infinite at singular points.
Poincaré observed that z is meromorphic at { = oo, which makes z = z({) meromorphic on
the whole ¢-sphere, and so it is a rational function of ¢. This then implies that the original
differential equation must have all its solutions algebraic, which Fuchs had expressly denied. It
is again a problem of the domain of definition. Poincaré suggested that there were three kinds
of {-value: those reached by A g; as z traced out a finite contour on the z-sphere; those reached
on an infinite contour, and those which are not attained at all. A priori, he said, all three situa-
tions could occur, and unless the differential equation has only algebraic solutions, the last two
would occur. Fuchs’s proof only worked for {-values of the first kind; however, Poincaré went
on, he could show that z({) was meromorphic even if the other kinds occurred, and he was
led to hypothesize: (1) if indeed all {-values were of the first kind then z would be a rational
function; (2) if there are values of only the first and second kinds, but z is single-valued at the
values of the second kind, then Fuchs’s theorem is still true; (3) if z is not single-valued or (4)
if the values of the third kind occur and so the domain of z is only part of the {-sphere, then z
is single-valued on D. In this case the {-values of the first kind occur inside D. Those of the
second kind lie on the boundary of D, and the unattainable values lie outside D. Finally there

is a fifth case, when all three kinds of {-value occur, but D has this form:

ISeven letters in the Poincaré-Fuchs correspondence are published in Julia & Pétiau (1956, 13-25), with an
eighth in the photograph on pages 275-276.



Figure 3

where values of the first kind fill out the annulus. Now, said Poincaré, z will not return to its
original value on tracing out a closed curve HHHH in D.

Fuchs replied on the fifth of June. He agreed that his Theorem I was imprecisely worded,
and returned to the hypotheses of his earlier Gottingen Nachrichten articles about the exponents
at the singular points. He added that he excluded paths in which f(z) and ¢ (z) both become in-
finite, which, he said, ensured that the remaining ¢-values filled out a simply-connected region
of the {-plane with the excluded values on the boundary.

Poincaré replied on the twelfth. Finding that some parts of the proof were still obscure he
suggested this argument. Let the singular points of the differential equation be joined to oo by
cuts. The image of this region (when z is not allowed to cross the cuts) is a connected region Fj.
If z crosses the cuts no more than m times, then the values of ¢ fill out a connected region F,.
As m tends to infinity F,, tends to the region Fuchs called F, and F will be simply-connected
if F}, is simply-connected for all m. “Now,” asked Poincaré, “is that a consequence of your
proof? One needs to add some explanation.” He agreed that F}, could not cover itself as it grew
in this fashion:

Figure 4

but the proof left open the possibility that the crossing formed an annular region (as in Figure
2, above).

Poincaré said that when there were only two finite singular points it was true that z was
a single-valued function, “That I can prove differently,” he went on, “but it is not obvious
in general. In the case where there are only two finite singular points I have found some
remarkable properties of the functions you define, and which I intend to publish. I ask your
permission to give them the name of Fuchsian functions.” In conclusion, he asked if he might
show Fuchs’s letter to Hermite.

Fuchs replied on the sixteenth, promising to send him an extract of his forthcoming com-
plete list of the second order differential equations of the kind he was considering. This work,
he said, makes any further discussion superfluous. He was very interested in the letters, and
very pleased about the name. Of course his replies could be shown to Hermite.

The reply shows once again the important difference of emphasis between the two mathe-
maticians. Fuchs was chiefly interested in studying functions obtained by inverting the integrals
of solutions to a differential equation, thus generalizing Jacobi inversion. For him it was only



by the way that one might ask that the inverse of the quotient of the solutions be single-valued.
This is a requirement that imposes extra conditions. Poincaré was interested in the global nature
of the solutions to differential equations, and so it was only the special case that was of interest,
and he gradually sought to emancipate it from its Jacobian origins. It is not without irony that
we find the young man gently explaining about analytic continuation and the difference be-
tween single-valued and unbranched functions, to someone who had consistently studied and
applied the technique for fifteen years.

Poincaré’s reply of the nineteenth of June clearly demonstrates this difference of emphasis.
Taking the condition on the exponents to be what Fuchs had indicated in his letter, Poincaré
wrote that he had found that when the differential equation was put in the form y” 4+ gy = 0,
then at all the finite singular points the exponent difference was an aliquot part of 1 and not
equal to 1, and there were no more than three singular points. If there was only one, z was
necessarily a rational function of {. If there were two, and the exponent differences were
P1, P2, and ps3 at infinity, then either p; + p, + p3 > 1, in which case z is rational in ¢,
or p; + p» + p3 = 1, in which case z was doubly periodic. Even in this case there were
difficulties, as he showed with an example. Finally, if there were three finite singular points,
then the exponents would have to be —2 and 0, and at infinity they would be % and 2. But
although these satisfied Fuchs’s criteria, z was not a single-valued function of ¢, so the theorem
is wrong. Poincaré therefore proposed to drop the requirement that Fuchs’s functions z; + z;
and z; - z, be single-valued in u; and u,. He went on to say that this gives a “much greater
class of equations than you have studied, but to which your conclusions apply. Unhappily, my
objection requires a more profound study, in that I can only treat two singular points.” Dropping
the conditions on the sum and product functions z; + z, and z; - z; admits the possibility that
the exponent differences p;, p2, and p3 satisfy p; + p» + p3 < 1. Now z is neither rational
nor doubly periodic, but is still single-valued. Poincaré explained, “These functions I call
Fuchsian, they solve differential equations with two singular points whenever p;, p,, and p3
are commensurable with each other. Fuchsian functions are very like elliptic functions, they
are defined in a certain circle and are meromorphic inside it.” On the other hand, he concluded,
he knew nothing about what happened when there were more than two singular points.

We do not have Fuchs’s reply, but Poincaré wrote to him again on the thirtieth of July to
thank him for the table of solutions which, he said “lifts my doubts completely.” Or perhaps,
not quite completely, for he went on to point out a condition on some of the coefficients of the
differential equations which Fuchs had not stated explicitly in the formulation of his theorems.
As for his own researches on the new functions, he remarked that they “present the greatest
analogy with elliptic functions, and can be represented as the quotient of two infinite series in
infinitely many ways. Amongst these series are those which are entire series playing the role
of Theta functions. These converge in a certain circle and do not exist outside it, as thus does
the Fuchsian function itself. Besides these functions there are others which play the same role
as the Zeta functions in the theory of elliptic functions, and by means of which I solve linear
differential equations of arbitrary orders with rational coefficients whenever there are only two
finite singular points and the roots of the three determinantal equations are commensurable.
I have also thought of functions which are to Fuchsian functions as Abelian functions are to
elliptic functions, and by means of which I hope to solve all linear equations when the roots
of the determinantal equations are commensurable. In the end, functions precisely analogous
to Fuchsian functions will give me, I think, the solutions to a great number of differential
equations with irrational coefficients.”

The correspondence winds down at this point, and Poincaré’s last letter (March 20, 1881)
merely announces that he will soon publish his research on the Fuchsian functions, which partly



resemble elliptic functions and partly modular functions, and on the use of Zetafuchsian func-
tions to solve differential equations with algebraic coefficients. In fact, his first two articles on
these matters had by then already appeared in the Comptes rendus de I’Académie des sciences.

The first supplement

Received by the Academy on the twenty-eighth of June, 1880, the first of Poincaré’s three
supplements is eighty pages in length. It begins by discussing the validity of Fuchs’s theorem
when there are only two finite singular points, and all the exponent differences are reciprocals
of integers, say pi, p2, and r. Poincaré concentrated on the case when p; + p, + 7 < 1, to
which he had just been led. In this case y maps the complex x-sphere onto a quadrilateral Q,
and under analytic continuation Q can be mapped onto a neighboring copy of itself obtained
by rotating it through an angle of i—’f about an appropriate vertex. Another copy is obtained
by a rotation through 27” about another vertex. Poincaré called these rotations M and N, and
observed that the copies of Q obtained by analytic continuation fill out a disc, and that each
copy of Q can be reached by a succession of crab-wise rotations (8):
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All these motions preserve the boundary circle, and taken together they form a group (9).
In this connection, Poincaré remarked (14-15):

There are close connections with the above considerations and the non-Euclidean
geometry of Lobachevsky. In fact, what is a geometry? It is the study of the
group of operations formed by the displacements to which one can subject a body
without deforming it. In Euclidean geometry the group reduces to the rotations and
translations. In the pseudogeometry of Lobachevsky it is more complicated.

Indeed, the group of operations formed by means of M and N is isomorphic to a
group contained in the pseudogeometric group. To study the group of operations
formed by means of M and N is therefore fo do the geometry of Lobachevsky.
Pseudogeometry will consequently provide us with a convenient language for ex-
pressing what we will have to say about this groupE] (Emphasis in the original).

Poincaré proceeded to develop the convenient language of non-Euclidean geometry, defin-
ing points, lines, angles, and equality of figures — two figures are equal if one is obtained
from another by a non-Euclidean transformation. Since the copies of O do not overlap, the
inverse function x = x(y) is a function “which does not exist outside the circle and which is
meromorphic inside this circle.’ﬂ Poincaré continued:

271 existe des liens étroits entre les considérations qui précédent et la géométrie non-euclidienne de Lo-
batchewski. Qu’est-ce en effet qu’une Géométrie ? C’est I’étude du groupe d’opérations formé par les déplace-
ments que 1’on peut faire subir a une figure sans la déformer. Dans la Géométrie euclidienne ce groupe se réduit
a des rotations et a des translations. Dans la pseudogéométrie de Lobatchewski il est plus compliqué. Eh bien,
le groupe des opérations combinées a 1’aide de M et de N est isomorphe a un groupe contenu dans le groupe
pseudogéométrique. Etudier le groupe des opérations combinées 2 I’aide de M et de N, c’est donc faire de la
géomeétrie de Lobatchewski. La pseudogéométrie va par conséquent nous fournir un langage commode pour ex-
primer ce que nous aurons a dire de ce groupe.” Note that isomorphe here is used in Jordan’s sense to mean what
would now be called “monomorphic”.

3“Qui n’existe pas a I’extérieur du cercle ... et qui est méromorphe a I'intérieur de ce cercle.”



I propose to call this function a Fuchsian function. ...The Fuchsian function is
to the geometry of Lobachevsky what the doubly periodic function is to that of
Euclid[]

Such functions only illuminate the study of differential equations if they can be defined
independently of the equations. This Poincaré proceeded to do by means of the Fuchsian series
he introduced. He let H be an arbitrary rational function and K be an arbitrary combination
of M’s and N’s. He let z and ¢ denote two variable quantities inside the boundary circle, and
introduced the sum

Y H(zK) — H(¢K)

taken over all distinct operations K (which, as he observed, is not the same as taking all combi-
nations of M’s and N ’s). He showed that the series was convergent by an ingenious argument
concerning the non-Euclidean area and Euclidean perimeter of the region composed of copies
of Q lying within a non-Euclidean circle of increasing radius. Because the perimeter tends to
a finite amount the integral

/( So o )dr
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taken along it remains finite, and so Poincaré was able to conclude (30):

...if H(z) = - [and] if the order of the terms is suitable, the series we consid-

UTZ
ered at the start is convergentE]

This result was not as strong as Poincaré wanted, and in a note between pages 23 and 24 he
remarked:

I have not been able to deduce the results I wanted from the consideration of Fuch-
sian series; however, I thought I should mention them because I remain convinced
that they will find application in the theory of Fuchsian functions ... E]

However, Poincaré immediately observed (33) that if f (z) is a Fuchsian function and
y1 and y, are two solutions of the differential equation, then x = f(z), y; = (f ’(z))%,
v2 = (f' (z))% and f’(z) can only vanish at the singular points of the differential equation.

Then he considered equations where the exponent differences were arbitrary rationals:
2Kp1,2K5p,,and 2Kr, where K1, K, and K are integers (43). He took two solutions of the
equation to be F(x) and ®(x), and defined 6;({) = F(f(x)), 6,() = ®(f(z)), where [ is
the Fuchsian function from the preceding case. He called the functions 8; and 6, Zetafuchsians,
remarking (49):

We shall call them Zetafuchsian functions because they seem to us to be analogous
to the Zeta functions one considers in the theory of doubly periodic functions[]

4«Je propose d’appeler cette fonction, fonction fuchsienne. ...La fonction fuchsienne est 4 la géométrie de
Lobatchewski ce que la fonction doublement périodique est a celle d’Euclide.”

S siH(z) = ﬁ, [et] si I’ordre des termes est convenable la série que nous avons considérée au début est
convergente.”

6“Je n’ai pu tirer de la considération des séries Fuchsiennes les résultats que j’en attendais; toutefois j’ai cru
devoir en parler parce que je reste persuadé qu’on trouvera a appliquer ces séries dans la théorie des fonctions
Fuchsiennes ....”

7“Nous les appellerons fonctions zétafuchsiennes parce qu’elles nous semblent présenter quelque analogie
avec les fonctions zéta que I’on considere dans la théorie des fonctions doublement périodiques.”
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(He was to repeat this point in his main paper on Zetafuchsian functions, written in 1884.)
He developed them as power series in z and observed (58) that they could be used to solve
differential equations with rational exponent differences and two finite singular points. Then
(61) he introduced the Thetafuchsian series defined by the series

dzK\"
> H(zK)
dz
summed over K, where H is a rational function and K an operation of the group described

above. He proved the series converged when m > 1 by a very similar argument to the earlier
one, and remarked (64):

I call this series the Thetafuchsian series because of its numerous analogies with
the theta functions ]

They were of two kinds, one holomorphic in the circle if H has no poles inside the circle,
and the other meromorphic when H does have poles inside the circle. Moreover (66):

The quotient of two Thetafuchsian series (corresponding to the same value of m)
is a rational function of the Fuchsian function[]

Then Poincaré defined “Thétrazéta” series, which are to Zetafuchsians what Theta-fuchsians
are to Fuchsian functions. Finally he summarized the work so far, which had taken him a long
way towards the creation of classes of analytic functions that solve many kinds of linear differ-
ential equation with algebraic coefficients. Poincaré stressed in particular that the new functions
allowed one to integrate the hypergeometric equation whenever the exponent differences are ra-
tional and no logarithmic term appears in the solution. (The term “hyper-geometric”” was never
used by Poincaré in 1880).

He also defended the use of non-Euclidean geometry, although he pointed out that one
could eliminate it if one wished. This last remark may well have been intended for Joseph
Bertrand, who was on the jury, and whose former belief in the possibility of a demonstration
of the parallel postulate was common knowledge, thanks to the Carton affair. This amusing
episode, recently described by Pont (see Pont 1986, 637-660), began when Jules Carton, a
professor of mathematics at St. Omer, sent Bertrand a proof of the parallel postulate, which
Bertrand endorsed when he presented it to the Académie des sciences during the meeting of
December 20, 1869 (Bertrand |1869). He compounded his error by publishing a short note
of his own simplifying Carton’s proof (Bertrand |1870). Darboux, Hoiiel, and Beltrami, who
were just then actively involved in bringing non-Euclidean geometry to France, were appalled,
and others were drawn in. The affair reached the newspapers, and finally it was demonstrated
publicly not only that Carton’s supposed proof was not new (it had been published by an Italian
mathematician, Minarelli |1849)), but that it was, of course, fallacious. Bertrand withdrew his
support, but one may suppose that it was prudent of Poincaré not to insist on the importance of
non-Euclidean geometry for his new work.

The second supplement

Twenty-three pages in length, the second supplement made its way to the Academy on the sixth
of September, 1880. With disarming honesty, it begins:

8«Cette série, je 1’appelle série thétafuchsienne a cause de ses nombreuses analogies avec les fonctions 6.”
“Le quotient de deux séries thétafuchsiennes (correspondant a une méme valeur de m) est une fonction ra-
tionnelle de la fonction fuchsienne.”
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I fear that my first supplement was lacking in clarity, and believe that it is not
pointless, before generalizing the results obtained, to go over these same results
again in order to provide some additional explanationsm

These further elucidations took the form of an explicit description of the non-Euclidean
geometry of the disc, defining point, line, angle, distance between two points (the cross-ratio
definition of the projective approach) and area (as a double integral). He then observed that the
maps preserving these quantities (and the boundary circle) are precisely the maps of the form

Z,_az+,3
Cyz+ 6

and he called them “mouvements pseudogéométriques”, distinguishing between rotations (which
have two real fixed points) and translations (which have none). The choice of the word ‘real’
(réel) was unfortunate; he plainly meant ‘point inside or outside the circle’ as opposed to points
on it, which are at infinity in non-Euclidean geometry.

Then he turned to the differential equations he had studied, and the decomposition of the
disc into triangles whose angles are aliquot parts of r. He referred to his two proofs that such
a decomposition was possible, the first in the essay itself and the other in the first supplement,
as follows:

The first of these demonstrations would not extend to the more general case that
I wish to treat; the second is not rigorous. That is why I think it will be useful to
give a third demonstration[']

The matter that Poincaré had left obscure consisted of showing that every point inside the
fundamental circle does lie in some copy of the quadrilateral Q. He now proved it rigorously by
showing explicitly how to cover a path from a given point D to the center O, by a finite number
of copies of Q; the finitude derived ultimately from the fact that OD has finite non-Euclidean
length (7).

The first novelty in the supplement was the decomposition of the disc into polygons with
angles aliquot parts of . As with the case of triangles, it is necessary to show that the region
of the polygons does not contain any overlaps. When there are no overlaps, the corresponding
function is single-valued and continuous on the boundary and takes the same value at corre-
sponding points. Poincaré’s comment at this point is most interesting when one recalls that
“monogeéne” means analytic (15-16):

There is always a function that satisfies the conditions stated above. This would
not be obvious if we had required our function ® to be monogenic, but we did
not do this; in fact, although there are monogenic functions satisfying the stated
conditions, as it will be seen later, I have not made this hypothesis because I have
no use for it, and because I am not yet in a position to prove the existence of such
functions[?]

10«Je crains d’avoir manqué de clarté dans mon premier supplément et je ne crois pas inutile, avant de
généraliser les résultats obtenus, devoir revenir sur ces résultats eux-mémes afin de donner quelques explications
supplémentaires.”

“La premiére de ces démonstrations ne s’étendrait pas au cas plus général que j’ai I’intention de traiter; la
seconde n’est pas rigoureuse. C’est pourquoi je crois utile d’en donner encore une troisieme démonstration.”

12¢1] existe toujours une fonction qui satisfait aux conditions énoncées plus haut. Cela ne serait pas évident
si nous avions assujetti la fonction ® a étre monogene, mais nous ne 1’avons pas fait; en effet bien qu’il existe
des fonctions monogenes satisfaisant aux conditions énoncées, ainsi qu’on le verra plus loin, je n’ai pas fait cette
hypotheése parce qu’elle m’est inutile, et parce que je ne serais pas encore en état de démontrer 1’existence de
semblables fonctions.”
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This reveals one of the more delightful gaps in Poincaré’s education, for it shows that he did
not then know the Riemann mapping theorem. This result asserts that any simply-connected
domain in the complex plane which is not the whole plane is equivalent, from the standpoint of
complex function theory, to the interior of the unit disc.

Then, Poincaré abruptly stated the connection with the theory of quadratic forms (17).
He supposed 7 was a matrix (“substitution’) with integer coefficients which preserved an
indefinite ternary quadratic form ®, and S a linear substitution sending £2 +n* —¢? to ®. Then
STS~! maps the quadratic form £2 + n* — 2 to itself. Suppose that it sends (£, 1, {) to take
over (¢, ', ¢’). The quantities

z = %—l— V=11, = g—: + /=1L

are related by a transformation z = ¢K of the non-Euclidean plane for which £2 +n> —¢? < 0.
Poincaré remarked (19):

All the points z - K are the vertices of a polygonal net obtained by decompos-
ing the pseudogeometrical plane into mutually congruent pseudogeometrical poly-
gons. The substitutions K are those that transform the polygons into each other, or

even, as we shall see below, those that reproduce the functions that we are going to
define[”]

He gave no proof of these claims, nor indeed that the sheets of the hyperboloid provide a
model of non-Euclidean geometry in the z-plane — the proof of the latter fact is quite easy —
but proceeded at once to generalize his earlier definition of Thetafuchsian functions. Now a
polygonal decomposition Py ... P; ... is taken to define a group, by saying the transformation
K; maps P; onto P,. If H(z) is a rational function then

dzK; \"
OEDY H(zKl-)( — )

defines the new function, for any integer m > 1. Convergence was established as before.
Poincaré then defined (20) the corresponding Fuchsian functions, f(z), and showed that they
took every value including oo equally often in the disc, and connected them to differential
equations, for f(z) can “serve to integrate a linear differential equation with algebraic coeffi-
cients.’ To show this, he set

x=fG) n=\%L n=z:y%

and formed the differential equation

Yy Y1 )2

dy —dy: dy .
dx  dx dx |~
d’y d’yi d*y,
dx? dx?> dx?
3“Tous les points z - K sont les sommets d’un réseau polygonal obtenu en décomposant le plan pseu-
dogéométrique en polygones pseudogéométriquement égaux entre eux. Les substitutions K sont celles qui trans-
forment ces polygones les uns dans les autres, ou bien encore comme on le verra plus loin, celles qui reproduisent

les fonctions que nous allons définir.”
14“Servir a intégrer une équation différentielle linéaire 2 coefficients algébriques” (21).
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It has y; and y, as solutions, and moreover,

A2 dyi_
Y1 x 3 Jx )
and X 5
d*y, d<y
nwoa Thga =0
Indeed it is
y
e + ¢(x) =0,
where

dy; d*y, _ dy, d?y,

dx dx?> dx dx?

is algebraic as a function of x. Poincaré proved this by showing it was single-valued, invariant
under the transformations z’ = zK; and took only finitely many z-values for each value of
x = f(z). In fact, ¢ is half the Schwarzian derivative of y with respect to x, which Poincaré
seems not to have known. Thus Poincaré could conclude this supplement by saying (23):

p(x) =

To every decomposition of the pseudogeometrical plane into mutually congruent
pseudogeometrical polygons there corresponds a function, analogous to the Fuch-
sian functions, and which enables us to integrate a second-order linear differential
equation with algebraic, but irrational, coefficients.

One sees that there are functions, of which the Fuchsian function is only a par-
ticular case, which enable us to integrate linear algebraic differential equations.
However, in order to determine whether a given equation is integrable in this way,
a long discussion would be required which I do not wish to enter into for the mo-
ment, but reserve for later]”|

The third supplement

A mere twelve pages in length, the third supplement reached the Academy on December 20,
1880. Poincaré dealt here with a class of equations which includes the most famous of all
the hypergeometric equations: Legendre’s equation for the periods of an elliptic integral as a
function of the modulus. For this class of equation the fundamental polygon has one or more
vertices on the boundary circle; in Legendre’s equation all four vertices are at infinity. When
the differential equation has just two finite singular points, Poincaré showed how it can be
solved by functions obtained by a limiting argument, assuming the validity of some continuity
considerations. He argued (9) that the coefficients of an equation of the form

dz

d_sz} = Poy,

15«A toute décomposition du plan pseudogéométrique en polygones pseudogéométriquement égaux entre eux
correspond une fonction analogue aux fonctions fuchsiennes et qui permet d’intégrer une équation linéaire de 2¢
ordre a coefficients algébriques, mais irrationnels. On voit qu’il y a des fonctions dont la fonction fuchsienne n’est
qu’un cas particulier et qui permettent d’intégrer des équations différentielles linéaires algébriques; mais pour
déterminer si une équation donnée est intégrable de la sorte, il faudrait une longue discussion que je me réserve
d’entreprendre plus tard, mais dans laquelle je ne veux pas entrer pour le moment.”
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where P, is rational in x and the corresponding quadrilateral is finite, can be varied contin-
uously so that the equation becomes a given one of the same form, and the quadrilateral is
continuously deformed into the appropriate infinite quadrilateral.

He had shown in the first (still unpublished) part of the memoir that an equation of the form

d?Py
X, pdx_p + X 0y = 0

where the X’s are polynomials in x, with highest degree m, can always be reduced to an
equation of order m and degree p by means of the substitution y = f e3*vdz where v is a
function of z which satisfies a linear equation of order and degree m. Thus any second order
equation with rational coefficients can be reduced to one of the second degree, and so to an
equation having only two finite singular points, whence it can be solved. Taken together with
the other results in the memoir and the supplements they allowed Poincaré to conclude (12):

Besides, I do not doubt that the numerous equations considered by M. Fuchs in his
Memoir in volume 71 of Crelle’s Journal ...provide an infinity of transcendants
...and that these new functions enable us to integrate all linear differential equation
with algebraic coefﬁcients

Commentary

The three supplements reveal how the discovery of the connection with non-Euclidean geom-
etry enabled Poincaré to advance so rapidly in his research. The discussion in the essay of
triangles inside the disc lacks this idea, and is somewhat inconclusive. But the first supplement
marks considerable progress in dealing with the general case where the angles of the triangles
are %, %, and % (and % + % + % < 1). This Poincaré achieved in two ways: the idea of
considering groups of motions enabled him to organize his ideas and formulate hypotheses; the
introduction of metrical concepts allowed him to state and sometimes prove convergence theo-
rems for various new power series that he introduced. Although he was consciously modeling
his Fuchsian theory on the theory of elliptic functions, the analogy is a subtle one and had not
been noticed before. This may well be due to his novel way of obtaining the series. As is also
clear from his published papers, Poincaré obtains Riemann surfaces as quotient spaces of the
unit disc, not, as was then the accepted way, as branched coverings of the (Riemann) sphere. So
he avoids the complicated question of dissecting a Riemann surface and constructing functions
on the dissected surface with assigned jumps across the cuts. However, it should be pointed out
that Poincaré does not talk about the quotient space at all at this stage, and there is no hint of
the uniformization of algebraic curves.

The date of the first supplement makes it very clear that the realization Poincaré had on
boarding the horse-drawn bus at Coutances (see Poincaré |1908, 43-63) was that the “mix-
tiligne” figures in his first essay were conformal versions of non-Euclidean figures. Perhaps he
realized that he had shown in the essay how to transform them into the Beltrami-Klein projec-
tive figures. It is striking that this realization had escaped Schwarz and Klein for several years.
This raises the question of how Poincaré had come to learn of non-Euclidean geometry.

16<Je ne doute pas d’ailleurs que les nombreuses équations envisagées par M. Fuchs dans son mémoire inséré
au Tome 71 du Journal de Crelle . ..ne fournissent une infinité de transcendantes . . . et que ces fonctions nouvelles
ne permettent d’intégrer toutes les équations différentielles linéaires a coefficients algébriques.” (The reference
should presumably be to Vol. 89 of Crelle’s Journal fiir die reine und angewandte Mathematik).
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The simple answer, Felix Klein’s Erlangen Program (Klein [1872), is surely mistaken.
Klein’s Erlangen Program defines a geometry as a group acting on a space, and explains that
isomorphic group actions give rise to equivalent geometries. Then it seeks to establish that
most well-known geometries are special cases of projective geometry, and in particular that
non-Euclidean geometry is a geometry whose space is the set of points inside a conic and
whose group is the projective transformations mapping the interior of the conic to itself. In
papers published at the time Klein showed in more detail how the projective invariant of cross-
ratio (which involves four points) can be made to yield a two-point metrical invariant. In the
Erlangen Program, however, the emphasis is strongly projective, and metrical geometry is not
much discussed. But in Poincaré’s work the emphasis is entirely metrical, and there is no sug-
gestion of a hierarchy of geometries; indeed, Euclidean and non-Euclidean geometries are the
only ones invoked. It is true that Poincaré first defines the non-Euclidean metric in the disc in
a way that involves cross-ratio, but this arises from the fact that his group elements arose natu-
rally as Mobius transformations. There is none of the richness of context that would indicate a
direct influence.

Poincaré does not call his view of geometry the Kleinian one, and he was as scrupulous
with attributions as his patchy reading and remarkable imagination would allow. The names
he mentions are Beltrami and Hoiiel. Moreover, the Erlangen Program was only distributed
at Erlangen on the occasion of Klein’s appointment as a professor there in 1872, and was
not the subject of his inaugural address. It is not cited in the literature of the 1870s, and it
is even more unlikely that Poincaré, who was not a voracious reader, would have known of
it. It did not become well-known until the early 1890s, when later developments, including
Poincaré’s own subsequent work and that of Sophus Lie made it seem prescient, and when
Klein, as the editor of Mathematische Annalen, was able to orchestrate its re-distribution. For
all these reasons it is very unlikely that the Erlangen Program is the unacknowledged source of
Poincaré’s philosophy of geometry.

It is harder to decide if Poincaré had read Klein’s essay of 1871, which introduced the non-
Euclidean group into the story, but in a projective spirit. In his first letter to Klein, written in
1881, Poincaré wrote: “I know how well you are versed in the knowledge of non-Euclidean
geometry, which is the real key to the problem we are dealing with.’ However, this probably
only shows that Poincaré found out about Klein’s work when he saw that it was relevant to
his own concerns, and in view of the more projective cast of Klein’s thought this may well be
the case. One should not make too much of Poincaré’s cross-ratio definition of non-Euclidean
distance. His earliest published papers use a different cross ratio (of zy, z,, and their images
outside the disc, see Poincaré 1881b, reedited in Darboux et al.|1916, 19-22), and it is probable
Poincaré made these observations himself. In any case, Poincaré grasped the new geometry
more firmly than Klein ever had.

That leaves us with the question of what, if anything, was the source of Poincaré’s views
on geometry. One clue is the degree to which group theory enters various contemporary for-
mulations of geometry. In the case of Helmholtz’s papers, the answer is not at all. Helmholtz
discusses rigid-body motions as the source of our knowledge of geometry, but there is no notice
taken of the fact that the motions of bodies may be thought of as the action of a group. The
same is true of Beltrami’s almost-Euclidean talk of superposition. In Klein’s case, the concepts
of subgroup and isomorphism are brought in to the story. To go to the other extreme, in Lie’s
case, there is a much more profound analysis, yielding a classification theorem for at least the
low-dimensional geometries.

17“Je sais combien vous étes versé dans la connaissance de la géométrie non-Euclidienne qui est la clef véritable
du probléme qui nous occupe.”
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So it would be in the spirit of the Erlangen Program to describe a group action, indicate the
appropriate invariants, and establish an isomorphism. It is not in the spirit to fail to mention
groups altogether. It goes beyond the spirit to investigate a group in any detail, and well beyond
it to seek to analyze all of them. So when in 1880, in the still-unpublished suppléments to
his essay on linear differential equations, Poincaré simply says that a geometry is a group of
operations formed by the displacements of a body that do not deform it, we can see various
influences at work. The motion of rigid bodies is an idea vividly presented by both Helmholtz
and Beltrami. Even Hoiiel in his book on Euclidean geometry wrote in those terms. The
conception is more metrical, and narrower than that of Klein.

The sources available to Poincaré included not only work by Hoiiel (a friend of Darboux)
on Euclidean geometry (Hoiiel 1863), but his translations of Beltrami’s Saggio (Beltrami|1869)
and Lobachevsky’s Geometrische Untersuchungen (Lobachevsky 1866). It is not certain that
the work of Helmholtz was known to him, nor is it clear that it would have added anything to
what was readily available. With or without Helmholtz’s papers, Poincaré could have known
from his teachers that geometry is the study of figures in a space that can be moved around
rigidly, so that exact superposition is possible and there is a notion of congruence. This idea,
which is easier to think through in the metrical than the projective case, works for both Eu-
clidean and non-Euclidean geometry. To anyone aware that thinking group-theoretically is
advantageous, it was then natural to observe that the rigid-body motions form a group. This
idea could have been had by Jordan, Darboux, Hermite, or Poincaré himself; it could even have
been a common-place among the better French mathematicians of the 1870s. There is no need
to attribute it to the influence of Klein.

Of these other influences, Beltrami’s essay is thoroughly differential-geometric in spirit.
It starts from the first fundamental form for a surface of constant negative curvature, and de-
rives formulae for arc length and area on a surface which is represented by the interior of a
unit Euclidean disc. In this representation geodesics appear straight (which is why it is some-
times called the Beltrami-Klein projective model, after Klein’s re-interpretation of it in 1871),
but Beltrami regarded figures as only approximately accurate. He showed that the intrinsic
trigonometry of such a surface was that described earlier by Minding and Codazzi, and so the
surface carries the non-Euclidean geometry of Lobachevsky. Because Beltrami’s presentation
is differential-geometric, uses a circular disc, and refers to Lobachevsky but not J. Bolyai or
Riemann, it is very likely that this is Poincaré’s source. Moreover, Beltrami based the idea of
geometry on the exact superposability of figures, which Poincaré also endorsed.

It is clear that geometrical insight always guided his research. First Poincaré dealt with the
case where the triangles had angles that were aliquot parts of 7, then arbitrary rational parts
of m, then, in the final supplement, zero angles. It was more than a convenient language, it
underlies the whole appeal to the limiting argument of the third supplement, which is scarcely
comprehensible otherwise. It also made possible the connection with the arithmetic of quadratic
forms. In this case, as is also clear from the paper he presented to the Association francaise
pour I’avancement des sciences in Algiers (Poincaré 1881a, reedited in Chatelet 1950, 267—
274), it is a different model of non-Euclidean geometry, one based on the hyperboloid of two
sheets. This model is commonly attributed to Weierstrass and Killing, who knew of it in 1872;
Poincaré seems to have come to it independently. The second supplément enables us to date
his realization to the summer of 1880, probably late August or early September, judging by its
abrupt appearance towards the end of the piece.

The fact that the new functions could be used to solve differential equations with algebraic
coefficients, together with the flexibility of the continuity method, suggest that the new func-
tions are really functions on a Riemann surface and that almost all Riemann surfaces might
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be obtainable as quotients of the unit disc. Poincaré did not observe this in the supplements,
but in two early papers (April 4 and May 30, 1881; Poincaré 1881d, in Chatelet |1950, 810
and Poincaré |1881c, reedited in Darboux et al. 1916, 16—-18) he said that any two Fuchsian
functions corresponding to the same group are algebraically related and that he did not know
if an arbitrary algebraic curve could be parameterized by Fuchsian functions. Thus we see that
Poincaré’s use of infinite polygons to prove the uniformization theorem derives from his inter-
est in differential equations, whereas Klein, who was not interested in differential equations,
always preferred finite polygons (cf. Freudenthal [1955] 213; Scholz 1980).

The supplements also make apparent astonishing gaps in Poincaré’s education, many of
which had to be filled by Klein. He clearly did not know Schwarz’s work on the hypergeometric
equation (Schwarz 1873|1890, 211-259), in which the first tessellation of the disc by polygons
appears. After Poincaré’s work, this tessellation can be seen as a non-Euclidean configuration,
but Schwarz had missed making this observation. In June, 1881, Klein began a prolonged
correspondence with Poincaré, and a running theme of these letters is the choice of names.
Klein was adamant that the appellation Fuchsian was undeserved, and in the sixth letter (June
27, 1881, see Julia & Pétiau|1956, 36) Poincaré admitted that had he known of Schwarz’s work,
he would have given his new functions a different name, but, as he had already said to Klein,
his regard for Fuchs would not now let him change the name. He then went ahead and the
same day named a new class of functions ‘Kleinian’ in the Comptes rendus (Poincaré 1881b),
reedited in Darboux et al. 1916, 19-22). Klein persisted in his protests against both names,
until in letter nineteen (April 4, 1882, Julia & Pétiau |1956, 55) Poincaré decided he had had
enough and protested with a citation from Faust, “Name ist Schall und Rauch.”

It is also clear that Poincaré had never heard of the Riemann mapping principle, which may
indirectly be the negative influence of Hermite. He seems to have suspected such a result ought
to be true, but the quotation above makes it clear he could not then prove it. On the other hand he

was clearly happy with the idea of automorphic functions, those for which f ("}Z—ig) = f(2),
and their fundamental domains. There is a possible source for this: Dedekind’s important paper
of 1877 on modular functions (Dedekind 1877). The latter paper virtually emancipated modular
functions from the theory of elliptic functions, and since this was a theme dear to Hermite’s
heart, Poincaré may well have learned about it at Polytechnique. If so, then, like Klein, he could
easily have added ideas of a group-theoretic kind to it. In any event, he recalled Hermite’s work
on the modular function, which showed that it is automorphic. The third supplement makes it
clear that it was the desire to include this famous function satisfying Legendre’s hypergeometric
equation that led Poincaré to contemplate his continuity method.

The outcome of the prize competition

The jury, faced with this rush of activity from Poincaré and a more sober memoir from Halphen
on differential invariants, along with a number of other essays, opted for sobriety. In awarding
Poincaré’s essay the second prize, Hermite reported: ... [T]he author successively treated two
entirely different questions, of which he made a profound study with a talent by which the
commission was greatly struck. The second ... concerns the beautiful and important researches
of M. Fuchs ... The results . .. presented some lacunz in certain cases that the author has recog-
nized and drawn attention to in thus completing an extremely interesting analytic theory. This
theory has suggested to him the origin of transcendents, including in particular elliptic func-
tions, and has permitted him to obtain the solutions to linear equations of the second order in
some very general cases. This is a fertile path that the author has not traversed in its entirety,
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but which manifests an inventive and profound spirit. The commission can only urge him to
follow up his research, in drawing to the attention of the Academy the excellent talent of which
they give proof” (see Darboux et al. 1916, 73).

A note on the text of the supplements

Jeremy Gray found the original manuscripts in December, 1979, when he was finishing his
doctoral thesis at the University of Warwick. They were in the Dossier Henri Poincaré at
the Académie des sciences in Paris. (JJG adds: I confess that I was completely surprised; it
later turned out that I had missed the announcement in the relevant volumes of the Comptes
rendus de I’Académie, where receipt of each supplément was recorded). He communicated his
findings to Professor Jean Dieudonné, who very graciously had copies made which he then sent
back to Gray. This copy, and Dieudonné’s own form the basis of the essays by Gray (1982)
and Dieudonné (1982)). The account here draws on Gray (1982, [2000), to which the reader is
referred for more details.

Poincaré’s original essays are hand-written, of course, but the Academy also possesses a
fair typewritten version of the first supplement. Professor Dieudonné conjectured that these
transcripts might have been made when the original essay was prepared for publication in the
first volume of the (Euvres de Poincaré, and then forgotten. Be that as it may, the memory
of their existence was lost, although they were as secure as the purloined letter, and they even
escaped notice during the events of the Poincaré Centenary in 1955.

Editorial policy

Our main concern in editing Poincaré’s manuscripts was to produce a legible printed copy, ac-
curately reflecting the original text. A handful of spelling errors have been silently corrected,
mostly concerning slips in adjectival accords. The capitalization of “fonctions fuchsiennes” has
been standardized, in occasional contradiction of the manuscript, which treats this in a haphaz-
ard fashion. The paragraph structure of our version reflects our sense for the thematic progres-
sion of the text, rather than strong, consistent, objective signal in the manuscripts. Poincaré’s
own corrections have been flagged with footnote calls. All notation reflects that employed by
Poincaré, and the original pagination is shown in brackets. Thus in our version of the first
supplement, it is clear that the original pagination is neither continuous nor sequential. There
are 79 (non-sequentially numbered) pages, including two page 48’s, but neither a page 41 nor
a page 42.
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