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Book Review

Beyond Einstein’s Velocity Addition Law. By Abraham A. Ungar.
Fundamental Theories of Physics 117. Kluwer Academic, Dordrecht, The
Netherlands, 2001, xlii+413 pp., $138.00 (hardcover).

By most standards, the basic four-dimensional spacetime formalism proposed
by Hermann Minkowski in 1908 for use in special relativity has performed
passably well. Spacetime diagrams in particular are ubiquitous to teaching
and research alike. However, from the inception of the spacetime approach,
and afterwards at an interval of roughly twenty years, rival formalisms
have arisen with the intent either to complement the dominant technique
or to supplant it entirely. The most recent entry in the lists is Abraham
Ungar’s gyrovector formalism, which after its discovery in 1988 underwent
significant development by its author, culminating in the work under
review. As with most new formal methods, it has little to recommend its
study in the way of new physical results or insights, but may be compared
with the spacetime approach in terms of the elegance of respective proofs
of selected theorems. One might also compare Ungar’s method to those of
his immediate forerunners. On both counts, the gyroformalism proves to be
worthy of physicists’ attention.
When H. Minkowski began pondering the structure of the Lorentz

group in 1907, one of the first things he noticed was that geometrical rela-
tions between velocity vectors measured in inertial frames of reference are
not Euclidean (as in classical kinematics), but hyperbolic. The spacetime
formalism he went on to develop for the physics of relativity, however,
did not exploit this insight, rather, its reliance on an imaginary temporal
coordinate tended to obscure the non-Euclidean nature of the Minkowski
metric. Nonetheless, his system, developed by A. Sommerfeld and others
into a full-blown vectorial analysis, and doted with a visually intuitive
model in the form of a spacetime diagram, rose rapidly to dominate
theoretical work in relativity. Mathematicians like V. Varičak and E. Borel
then saw that by employing a real temporal coordinate, they could exploit
hyperbolic trigonometry, and went on inaugurate a new, non-Euclidean



style of relativity. This alternative style was largely neglected by contem-
porary physicists, who also ignored Borel’s subsequent discovery of a
kinematic phenomenon later known as Thomas precession. Even so, the
non-Euclidean style found steady employment in relativity textbooks,
where it was used to present velocity composition.
Over the years, there have been a handful of attempts to promote the

non-Euclidean style for use in problem solving in relativity and electro-
dynamics, the failure of which to attract any substantial following, com-
pounded by the absence of any positive results must give pause to anyone
considering a similar undertaking. Until recently, no one was in a position
to offer an improvement on the tools available since 1912. In his new book,
Ungar furnishes the crucial missing element from the panoply of the non-
Euclidean style: an elegant nonassociative algebraic formalism that fully
exploits the structure of Einstein’s law of velocity composition. The for-
malism relies on what the author calls the ‘‘missing link’’ between Einstein’s
velocity addition formula and ordinary vector addition: Thomas preces-
sion, or the angular difference in relative velocity that results when one
changes the order of frame velocities in the velocity addition formula, the
magnitude of this relative velocity being invariant with respect to frame
order.
Ungar lays out for the reader a sort of vector algebra in hyperbolic

space, based on the notion of a gyrovector. A gyrovector space differs in
general from a vector space in virtue of inclusion of Thomas precession,
and exclusion of the vector distributive law. As a result, when expressed in
terms of gyrovectors, Einstein’s (noncommutative) velocity addition law
becomes ‘‘gyrocommutative,’’ in that the two possible expressions for rela-
tive velocity for two inertial frames in non-parallel motion are related by
a Thomas precession. One advantage of this approach is that hyperbolic
geometry segues into Euclidean geometry, with notions such as group,
vector, and line passing over to their hyperbolic gyro-counterparts (gyro-
group, etc.). Ungar’s book is devoted to the presentation of the theory of
gyrogroups and gyrovector spaces derived from the formal wedding of
velocity addition to Thomas precession.
One might suppose that there is a price to pay in mathematical

regularity when replacing ordinary vector addition with Einstein’s addition,
but Ungar shows that the latter supports gyrocommutative and gyroasso-
ciative binary operations, in full analogy to the former. Likewise, some
gyrocommutative and gyroassociative binary operations support scalar
multiplication, giving rise to gyrovector spaces, which provide the setting
for various models of hyperbolic geometry, just as vector spaces form the
setting for the common model of Euclidean geometry. In particular,
Einstein gyrovector spaces provide the setting for the Beltrami ball model
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of hyperbolic geometry, while Möbius gyrovector spaces provide the setting
for the Poincaré ball model of hyperbolic geometry.
The book begins with a potted history of Thomas precession and its

abstract counterpart, Thomas ‘‘gyration’’ (thus explaining the plethora of
‘‘gyro’’ prefixes). This chapter will be of most interest to physicists, as it
presents the basic method of gyrovectors and their motivation in a nutshell.
Subsequent chapters are more formal, laying out in definition-lemma-
theorem style the theory of gyrogroups and gyrovector spaces, with refer-
ence to the Beltrami and Poincaré models of hyperbolic geometry, includ-
ing a nice discussion of common and hyperbolic parallel transport, studied
with the methods of nonassociative algebra rather than those of differential
geometry. In the book’s final chapters, one finds a parametrization of the
abstract Lorentz boost by gyrovectors, and two further parametrizations of
nonlinear, pseudo-Lorentz transformations.
A trip ‘‘Beyond the Einstein Addition Law’’ will require a grasp of the

basics of group theory, as well as access to a computer algebra program.
For the perplexed, the author points to a wealth of references on both
elementary and advanced concepts. Further assistance is provided by over
eighty figures, most of which employ either Beltrami or Poincaré discs. The
figures do yeoman service in aiding the reader to follow the geometric
arguments, the assimilation of which may be tested by working out the
exercises that close each chapter. Unfortunately, the text suffers from
inadequate editing, with unnecessary repetition between chapters. A self-
congratulatory tone, and an irrelevant recapitulation of an ongoing priority
dispute are also to be regretted. Perhaps in relation to the latter, the author
refers again and again to his first publication on K-loops, when he could
have saved space and time by simply including the paper in an appendix.
Minor flaws in presentation aside, what can be said of the epistemic

value of Ungar’s formalism? There are three areas susceptible to applica-
tion of the gyrogroup method: physics, non-Euclidean geometry and
abstract algebra. All three areas appear ready to benefit from the method,
which simplifies certain calculations and exploits Euclidean space intui-
tions. But will these advantages bring about new insights, and new results?
For abstract algebra and non-Euclidean geometry, the author summarizes
several recent results, for example, a new model of hyperbolic geometry
(the ‘‘Ungar model’’), and the discovery of cohyperbolic geometry (in
which the angle sum of a triangle is p, but triangle medians are not con-
current). For physics, however, one still wonders if a compact, Euclidean
vector notation accompanied by Beltrami or Poincaré models will ever
outperform tensor calculus aligned with spacetime diagrams. To argue
the case for gyrogroup methods, Ungar revives the age-old question of
the reality of the Lorentz–FitzGerald contraction (LFC). He applies his
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gyrogroup-theoretic method to the problem of the apparent form of a
sphere in uniform motion, and finds that it is measured as a flattened
ellipsoid by an observer at rest. According to Ungar, this result vindicates
Einstein’s stance on the appearance of a sphere in uniform motion against
the well-known argument of R. Penrose (1959), which holds that such flat-
tening is not photographically observable. Penrose, however, considers
light propagating with finite velocity from the sphere to an ideal photo-
graphic plate at rest, where Ungar assumes infinite signal velocity, a dif-
ference which clearly moots the comparison. For the case considered by the
author, a more fruitful analogy might be drawn with the three-dimensional,
mental ‘‘snapshots’’ described by J. Synge in his 1955 textbook on special
relativity. Given the form of an object in motion as judged by a comoving
inertial observer, Synge’s method determines the object form as judged by
an observer at rest, via iterative Lorentz transformation of surface points,
where Ungar’s algebra recovers the entire form in one fell swoop. Although
apodictic proof of the gyrogroup method’s creative power of discovery
in physics is still forthcoming, physicists will appreciate the new geometric
view of Einstein’s velocity addition law and Thomas precession. Announced
as a likely companion text to both undergraduate and graduate courses in
physics, non-Euclidean geometry and abstract algebra, the book stands to
be of most profit to advanced students and researchers. It will be a useful
addition to all research libraries.
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