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Jorge Schaeffer (1927-), Alfred Marcel Schnei-
der (1925-), Hans Schneider (1927-), Biyamin
Schwarz (1919-2000), Josef Silberstein (1920-),
Frank Spitzer (1926-1992), Theodor David Ster-
ling (1923-), Erwin Trebitsch (1920-), Hans Fe-
lix Weinberger (1928-) und John (Hans) Wermer
(1927-).

The following names belong to young Aus-
trians born after 1920 who were expelled
from their home country and got their
academic training as physicists in Great
Britain or the United States:

Fred Peter Adler (1925-), Erika Rivka Bauminger
(1927-), Arthur Biermann (1925-), Frank Joachim
Blatt (1924-), Henry Victor Bohm (1929-), Fred-
eric de Hoffmann (1924-1989), Harold Paul
Furth (1930-), Thomas Gold (1920-2004), Robert
Gomer (1924-), Kurt Gottfried (1929-), Leopold E.
Halpern (1925-2007), Erich Martin Hardt (1919-),
Charles Maria Herfeld (1925-), Arvid Herzenberg
(1925-), Charles M. Herzfeld (1925-), Walter F.
Hitschfeld (1922-), Frederic Gerald Holton (1922-
), Robert Karplus (1927-), Walter Kohn (1924-),
Noémie Koller (1933-), Alfred Leitner (1921-), Pe-
ter Lindenfeld (1921-), Ernest M. Loebl (1923-),

Georg M. Low (1926-1984), William Zeev Low
(1922-), Harry Lustig (1925-), Hans Michael Mark
(1929-), Peter Arnold Moldauer (1923-1985),
Peter Wolfgang Neurath (1923-), Paul Michael
Pfalzner (1923-), Dan Porat (1922-), Kurt Reibel
(1926-), Frederic Reif (1927-), Wolfgang Rindler
(1924-), Fritz Rohrlich (1921-), Norbert Rosen-
zweig (1925-), Baruch Rosner (1931-), John Ross
(1926-), Edwin E. Salpeter (1924-), Erwin Robert
Schmerling (1928-), Siegfried Fred Singer (1924-
), Joseph Sucher (1930-), Robert Stratton (1928-
), Gerald Erich Tauber (1922-), George Maxime
Temmer (1922-1997), Kurt Toman (1921-), Arye
Leo Weinreb (1921-), Werner Paul Wolf (1930-),
Paul Zilsel (1923-2006).

These two lists of mathematicians and
physicists impressively demonstrate the
loss of intellectual potential Austria suf-
fered in the aftermath of the year 1938.
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Hermann Minkowski and
the Scandal of Spacetime
Scott Walter

When Hermann Min-
kowski’s first paper on
relativity theory1 ap-
peared in April 1908,
it was met with an im-
mediate, largely criti-
cal response. His paper
purported to extend the
reach of the principle of relativity to the
electrodynamics of moving media, but one
of the founders of relativity theory, the
young Albert Einstein, along with his co-
author Jakob Laub, found Minkowski’s
theory to be wanting on physical and for-
mal grounds alike. The lesson in physics
delivered by his two former students
did not merit a rejoinder, but their sum-
mary dismissal of his sophisticated four-
dimensional formalism for physics appears
to have given Minkowski pause.

The necessity of such a formalism for
physics was stressed by Minkowski in a
lecture entitled “Raum und Zeit,” delivered
at the annual meeting of the German As-
sociation for Natural Scientists and Physi-
cians in Cologne, on 21 September 1908.

Minkowski argued famously in Cologne
that certain circumstances required scien-
tists to discard the view of physical space
as a Euclidean three-space, in favour of
a four-dimensional world with a geometry
characterized by the invariance of a certain
quadratic form. Delivered in grand style,
Minkowski’s lecture appears to have struck
a chord, generating a reaction that was phe-
nomenal in terms of sheer publication num-
bers and disciplinary breadth.

Historians have naturally sought to ex-
plain this burst of interest in relativity the-
ory. According to one current of thought,
Minkowski added nothing of substance
to Einstein’s theory of relativity, but ex-
pressed relativist ideas more forcefully and
memorably than Einstein.2 . It has also
been suggested that Minkowski supplied
a mathematical imprimatur to relativity
theory, thereby reassuring those who had
doubted its internal coherence.3 A third
explanation claims that Minkowski’s ex-
plicit appeal to “pre-established harmony”
between pure mathematics and physics
resonated with Wilhelmine scientists and
philosophers, just when such Leibnizian
ideas were undergoing a revival in philo-
sophical circles.4

The lack of historical consensus on the
reasons for the sharp post-1908 upswing

in the fortunes of special relativity reflects,
to a certain extent, the varied, conflicting
accounts provided by the historical actors
themselves.5 A focus on the disciplinary
reception of Minkowski’s theory, however,
shows a common concern over the ade-
quacy of Euclidean geometry for the foun-
dations of physics. Much of the excitement
generated by Minkowski’s Cologne lecture
among scientists and philosophers arose
from an idea that was scandalous when an-
nounced on September 21, 1908, but which
was soon assimilated, first by theorists and
then by the scientific community at large:
Euclidean geometry was no longer ade-
quate to the task of describing physical re-
ality, and had to be replaced by the geome-
try of a four-dimensional space Minkowski
named the “world” (Welt).

The scandalous nature of spacetime is
brought into focus first by examining the
situation of physical geometry at the time
of Minkowski’s first lecture on relativity in
1907, and then by following the evolution
of his definition of the “world” in his writ-
ings on relativity. For the sake of concision,
these preliminary observations are omitted
here, in favour of a few examples of the
reaction sustained by Minkowski’s radical
world view on the part of a few of his most
capable readers in physics.6
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The published ver-
sion of “Raum und
Zeit” sparked an explo-
sion of publications in
relativity theory, with
the number of papers
on relativity tripling
between 1908 (32 pa-
pers) and 1910 (95 papers).7 This sud-
den upswing in the interest is clearly a
complex historical phenomenon requiring
careful study, for the theory of relativ-
ity carried different meaning for different
observers.8 While Minkowski’s spacetime
theory is conceptually and formally dis-
tinct from Einstein’s special relativity the-
ory and the Lorentz-Poincaré relativity the-
ory, the history of its reception is similarly
polysemous. For example, a disciplinary
analysis of the reception of Minkowski’s
Cologne lecture reveals a overwhelmingly
positive response on the part of mathe-
maticians, and a decidedly mixed reaction
on the part of physicists.9 A close ex-
amination of the physicists’ response to
Minkowski’s lecture shows that what they
objected to above all in Minkowski’s view
was the idea that Euclidean space was no
longer adequate for understanding physical
phenomena. The range of response among
physicists to Minkowski’s attack on Eu-
clidean space, we will see here, went fairly
smoothly from cognitive shock and out-
right denial, on one end, to unreserved en-
thusiasm and collaborative extension on
the other end.

Among the physicists shocked by
Minkowski’s spacetime theory was
Danzig’s Max Wien, an experimental
physicist. In a letter to the Munich theo-
retical physicist Arnold Sommerfeld, Max
Wien described his experience reading
Minkowski’s Cologne lecture as provok-
ing “a slight brain-shiver, now space and
time appear conglomerated together in a
gray, miserable chaos”.10 His cousin Willy
Wien, director of the Würzburg Physi-
cal Institute and co-editor of Annalen der
Physik, was shocked, too, but it wasn’t the
loss of Euclidean space that bothered him
so much as Minkowski’s claim that cir-
cumstances forced spacetime geometry on
physicists. The entire Minkowskian sys-
tem, Wien said in a 1909 lecture, “evokes
the conviction that the facts would have
to join it as a fully internal consequence.”
Wien would have none of this, as he felt
that the touchstone of physics was experi-
ment, not abstract mathematical deduction.
“For the physicist,” Wien concluded his
lecture, “Nature alone must make the final
decision”.11

On the opposite end of the spectrum
of response to Minkowski’s attack on Eu-
clidean space, Max Born and Arnold Som-
merfeld saw in Minkowski spacetime the
future of theoretical physics. Both men had
close ties to Minkowski, and upon the lat-
ter’s untimely death on 12 January 1909,
each took up the cause of promoting a
spacetime approach to physics. In a cru-
cial contribution to Minkowski’s program,
Sommerfeld transformed Minkowski’s un-
orthodox matrix calculus into a four-
dimensional vector algebra and analy-
sis,12 based on the notational conven-
tions he had introduced in 1904 as edi-
tor of the physics volumes of Felix Klein’s
monumental Encyclopedia of Mathemati-
cal Sciences Including Applications. Som-
merfeld’s streamlined spacetime formal-
ism was taken over and extended by Max
Laue, then working in Sommerfeld’s insti-
tute in Munich, for use in the first Ger-
man textbook on relativity theory.13 Laue’s
textbook was hugely successful, and ef-
fectively established the Sommerfeld-Laue
formalism as the standard for research in
relativity physics.

Sommerfeld insisted upon the sim-
plification afforded to calculation by the
adoption of a spacetime approach, and
left aside Minkowski’s philosophical in-
terpretation of spacetime, with one excep-
tion. In the introduction to his 1910 re-
formulation of Minkowski’s matrix calcu-
lus, Sommerfeld echoed Minkowski’s be-
lief that absolute space should vanish from
physics, to be replaced by the “absolute
world” of Minkowski spacetime.14 This
exchange of absolutes, Euclidean 3-space
for Minkowski spacetime, was clearly de-
signed to calm physicists shocked by
Minkowski’s high-handed dismissal of Eu-
clidean space as the frame adequate for un-
derstanding physical phenomena.

Between the extremes represented by
the responses of Max Wien and Arnold
Sommerfeld emerged the mainstream re-
sponse to Minkowski’s interpretation. The
latter is well represented by remarks ex-
pressed by Max Laue in his influential rel-
ativity textbook, mentioned above. Laue
considered Minkowski spacetime as an
“almost indispensable resource” for pre-
cise mathematical operations in relativ-
ity.15 He expressed reservations, however,
about Minkowski’s philosophy, in that
the geometrical interpretation (or “anal-
ogy”) of the Lorentz transformation called
upon a space of four dimensions. One
could avail oneself of the new four-
dimensional formalism, Laue assured his
readers, even if one was not blessed

with Minkowski’s spacetime-intuition, and
without committing oneself to the ex-
istence of Minkowski’s four-dimensional
world.

By disengaging Minkowski’s space-
time ontology from the Sommerfeld-Laue
spacetime calculus, Laue cleared the way
for the acceptance by physicists of his ten-
sor calculus, and of spacetime geometry
in general. A detailed study of the re-
ception of Minkowski’s ideas on relativity
has yet to be realized, but anecdotal evi-
dence points to a change in attitudes to-
ward Minkowski’s spacetime view in the
1950s. For example, in the sixth edition of
Laue’s textbook, celebrating the fiftieth an-
niversary of relativity theory, and marking
the end of Einstein’s life, its author still
felt the need to warn physicists away from
Minkowski’s scandalous claim in Cologne
that space and time form a unity. As if in
defiance of Laue, this particular view of
Minkowski’s (“Von Stund’ an . . . ”) was
soon cited (in the original German) on
the title page of a rival textbook on spe-
cial relativity.16 In Laue’s opinion, how-
ever, Minkowski’s most famous phrase re-
mained an “exaggeration”.17

Minkowski’s carefully-crafted Cologne
lecture shocked scientists’ sensibilities, in
sharp contrast to all previous writings
on relativity, including his own. The au-
thor of “Raum and Zeit” famously char-
acterized his intuitions (Anschauungen) of
space and time as grounded in experi-
mental physics, and radical in nature. Pre-
dictably, his lecture created a scandal for
physicists in its day, but unlike most scan-
dals, it did not fade away with the next
provocation. Instead, Minkowski focused
attention on how mathematics structures
our understanding of the physical universe,
in a way no other writer had done since
Riemann, or has managed to do since,
paving the way for acceptance of even
more visually-unintuitive theories to come
in the early twentieth century, including
general relativity and quantum mechanics.
Minkowski’s provocation of physicists in
Cologne, his rejection of existing referents
of time, space, and geometry, and his ap-
peal to subjective intuition to describe ex-
ternal reality may certainly be detached
from Minkowski geometry, as Laue and
others wished, but not if we want to under-
stand the explosion of interest in relativity
theory in 1909.
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Hyperbolic Dynamical
Systems at the ESI in 2008
Domokos Szász

Depending on their
fundamental be-
haviours, dynamical
systems can be clas-
sified as ‘stable’ or
‘unstable’. Basic ex-
amples of stable sys-
tems are the math-
ematical pendulum or the solar system
with periodic or quasi-periodic motions
(cf. KAM-theory). Unstable behaviour is
strongly connected to non-vanishing of
Lyapunov exponents, to sensitivity to ini-
tial conditions, and to stochastic or chaotic
behaviour. Basic examples of unstable sys-
tems are particle systems (e. g. those of
hard balls) giving rise to statistical me-
chanics, or hydrodynamic equations giving
rise to turbulence.

Technically speaking, for the map
which describes the transition of the system
from time zero to time one, hyperbolicity
means that the spectrum of the linearized
map has no eigenvalue on the unit circle.
Hyperbolicity is most easily detected if this
condition also holds for all iterates of the
map, i.e., for the transitions of the system
from time zero to time n for every n ≥ 1.

In 1996, Philippe Choquard, Carlan-
gelo Liverani, Harald Posch and myself or-
ganized the semester Hyperbolic Systems
with Singularities at the ESI. Though bil-
liard systems, hard ball systems, etc. were
among our top interests, the name of the
semester was different and chosen with the
following idea back in our minds. We in-

tended to go beyond billiard-like systems,
we wanted to understand them primarily as
examples of hyperbolic systems with sin-
gularities. The hope was that this wider
framework would help to better under-
stand billiard-like systems. The semester
was most successful, with many exciting
results in the seminars, discussions and in
subsequent preprints.

Let me point out here only one result,
Lai Sang Young’s tower construction, for
two reasons. Firstly, the title of her paper
— probably accidentally — was Statistical
Properties of Hyperbolic Systems with Sin-
gularities thus containing the same ‘termi-
nus technicus’ as the name of the semester.
(Her paper was ESI preprint No. 445 and
appeared in 1998 in Annals of Mathemat-
ics). The second reason is that the — in
my view — most sensational result of that
paper, the exponential decay of correla-
tions for planar finite horizon Sinai bil-
liards, was proved exactly by using the ad-
vantage of considering billiards from this
broader perspective, as hyperbolic systems
with singularities. In this way, part of her
tools and ideas were borrowed from meth-
ods worked out for the Hénon map, for uni-
modal maps of the interval, etc. Since then
billiard methods are getting better and bet-
ter embedded into the theory of hyperbolic
dynamical systems. It is worth pointing out
that before Young’s work, for the same
class of billiards, stretched exponential de-
cay had already been known (Bunimovich-
Sinai, 1981, Bunimovich-Chernov-Sinai,
1991) and this weaker property was still
sufficient to establish the CLT (central limit
theorem), for instance. However, for the
derivation of finer stochastic properties (e.
g. the local version of CLT, Szász-Varjú,

2004) this weaker property was not suffi-
cient and for obtaining them it seems to
have been necessary to go down to the
tower construction itself.

This time the name of the programme is
not very original: Hyperbolic Systems with
Singularities, organized by Harald Posch,
Lai Sang Young and myself. The fact that
physicists have been among the organiz-
ers (Harald Posch both times and Philippe
Choquard in 1996) reflects the fact that the
topic is central to both mathematics and
physics. Furthermore the composition of a
mixed audience has the absolute advantage
that both mathematical and physical theo-
ries can gain a lot from the interaction of
the communities involved.

The duration of the programme is
rather short: six weeks altogether. By us-
ing the abbreviation Wn, n = 1, 2, ..., 6 for
the 6 weeks of the programme, the struc-
ture of the semester is the following. W2
- W5 are the central parts of the program.
During W2 and W5 there will be two work-
shops. W2 (June 2-6) will be focused on
nonequilibrium systems and was organized
essentially by Harald Posch with the assis-
tance of the co-organizers. The talks and
the discussions will concentrate on four
major topics:

• Hamiltonian systems: low-
dimensional particle systems

• Hamiltonian systems: anharmonic
chains and coupled maps

• Stochastic systems
• Open quantum systems

In the last decade these problems have been
in the focus of attention equally of mathe-
maticians and physicists. To mention just
one fundamental problem, to which the
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