
Hypothesis and Convention
in Poincaré’s Defense of Galilei Spacetime

Scott Walter1

Abstract:

According to the conventionalist doctrine of space elaborated by the French philosopher-sci-
entist Henri Poincar¤ in the 1890s, the geometry of physical space is a matter of defini-
tion, not of fact. Poincar¤’s Hertz-inspired view of the role of hypothesis in science guided
his interpretation of the theory of relativity (1905), which he found to be in violation of
the axiom of free mobility of invariable solids. In an effort to save the Euclidean geometry
that relied on this axiom, Poincar¤ extended the purview of his doctrine of space to cover
both space and time. The centerpiece of this new doctrine is what he called the “principle
of physical relativity,” which holds the laws of mechanics to be covariant with respect to a
certain group of transformations. For Poincar¤, the invariance group of classical mechanics
defined physical space and time (Galilei spacetime), but he admitted that one could also
define physical space and time in virtue of the invariance group of relativistic mechanics
(Minkowski spacetime). Either way, physical space and time are the result of a conven-
tion.

Perhaps more than any other figure in contemporary science, Henri
Poincaré focused the attention of both philosophers and scientists on
the role played by hypothesis in the pursuit of scientific knowledge.
The history of twentieth-century philosophy of science is marked by
his conventionalist philosophy of geometry, which troubled philoso-
phers from Ernst Cassirer, Moritz Schlick and Hans Reichenbach in
the 1910s and 1920s, Philipp Frank, Ernest Nagel and Adolf Grünbaum
in the 1950s and 1960s, Lawrence Sklar, Hilary Putnam, David Mala-
ment, Michael Friedman and others from the 1970s and 1980s up to
the present.2 Much of this philosophical discussion is concerned with
the conventionality of simultaneity in relativity theory, a problem dis-
tinct, on one hand, from that of the conventionality of simultaneity
in classical mechanics (first discussed by Poincaré in 1898), and on the

1 My thanks go to Yemima Ben-Menahem, Olivier Darrigol, Arthur Fine, Ger-
hard Heinzmann, Alberto Martìnez, Erhard Scholz, and the editors for discus-
sion and insightful comments.

2 For a comprehensive overview, see Ben-Menahem (2006).



other hand, from that of the Riemann-von Helmholtz-Lie problem of
space, which occupied Poincaré and his contemporaries in the late nine-
teenth century. At the end of his life, Poincaré fused these two problem
sets, and realized the overriding necessity of a spacetime convention for
the foundations of physics. The following account of Poincaré’s prog-
ress toward the latter view proceeds chronologically, beginning with
the elaboration of his doctrine of physical space (1880–1900), followed
by a discussion of Poincaré’s understanding of the hypothetical basis of
the theory of relativity (1900–1906), and an analysis of the 1912 lecture
“L’espace et le temps,” in which Poincaré affirmed the central role of
hypothesis and convention in the production of scientific knowledge.

1. Poincaré’s Doctrine of Physical Space

Poincaré’s philosophy of geometry first took form following French de-
bates in the 1870s over the logical coherence and physical meaning of
non-Euclidean geometry. While no French mathematician had been di-
rectly involved in the reevaluation of the foundations of geometry of
the 1820s and 1830s, the ideas advanced by Bernhard Riemann, Euge-
nio Beltrami, and Hermann von Helmholtz found both partisans and
opponents in late nineteenth-century France.

By 1869 at the latest, the French mathematical establishment had
recognized the existence of non-Euclidean geometries. In that year
the French Academy of Sciences published for the very last time a
note purporting to prove the parallel postulate. Its author, Joseph Ber-
trand, held the chair of general and mathematical physics at the Collège
de France and was also Professor of Analysis at the École polytechnique.
Bertrand published a demonstration of the parallel postulate over the
protests of fellow members of the geometry section, but the ensuing
public scandal eventually led him to admit that the proof had met
with less than universal approval (Pont 1986, 637).

Debate over the status of non-Euclidean geometry continued well
after 1870, particularly among French philosophers. Paul Tannery’s em-
piricism met with opposition from neo-Kantians Charles Renouvier
and Louis Couturat, whose pet claim was that only Euclidean geometry
could be objective, because it was the only geometry subtended by spa-
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tial intuition. Euclidean geometry was thereby an ideal science, and an
example of synthetic a priori knowledge in the Kantian scheme.3

It was also in the 1870s that France’s most brilliant mathematician
came of age. Henri Poincaré (1854–1912) was educated at the École
polytechnique, under the tutelage of Charles Hermite, Henri Résal,
and Alfred Cornu, and at the École des mines, where Henry Le Chate-
lier taught chemistry. In 1879 he defended a doctoral thesis supervised
by Gaston Darboux on the geometric theory of partial differential equa-
tions, and after a short stint as a mine inspector in northeastern France,
was engaged to teach mathematics at the University of Caen (Rollet
2001).

Less than a year after arriving in Caen, Poincaré entered the com-
petition for the grand prize in mathematical sciences organized by the
French Academy of Sciences, which required contestants to “perfect
an important element of the theory of linear differential equations in
one independent variable.” His submission did not win the prize,
even though the three supplements to his prize essay established a
new class of automorphic functions, that Poincaré called “Fuchsian”
functions, in honor of the German mathematician Lazarus Fuchs.

The connections between Fuchsian functions and conventionalist
philosophy of geometry are numerous, as Zahar (1997) shows. What
Poincaré’s supplements reveal is that as early as 1880, Poincaré under-
stood geometry in terms of groups of transformations. Fuchsian func-
tions, Poincaré discovered, are invariant under a certain class of linear
transformations that form a group. The study of the group in question
reduces to that of the translation group of hyperbolic geometry,
prompting the young Poincaré to ask (1997, 35):

Just what is, in fact, a geometry? It is the study of the group of operations
formed by the displacements a figure can go through without deformation.
In Euclidean geometry this group reduces to rotations and translations. In
Lobachevsky’s pseudogeometry it is more complicated.

Geometry is reduced here to group theory, in the spirit of Felix Klein’s
Erlanger Program, although it appears unlikely that Poincaré had any
knowledge of this program at the time. Other printed sources on
non-Euclidean geometry were available to him, including French trans-
lations of Beltrami and von Helmholtz, and during his student days in

3 On the reception of non-Euclidean geometry among francophone Neokan-
tians, see Panza (1995).
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the late 1870s, Poincaré may well have picked up from his teachers
(Hermite, Darboux, Jordan) the idea that the motions of a rigid body
form a group. There is a strong resemblance between Poincaré’s presen-
tation of his model of hyperbolic geometry and that of Beltrami. Both
are circle models, differential-geometric and refer to Lobachevsky alone,
and although Poincaré does not mention Beltrami by name, the latter’s
work was surely an inspiration to him (Gray and Walter 1997).

Poincaré’s prodigious discovery of Fuchsian functions propelled him
into the higher echelons of French mathematics. In 1886 he became a
full professor of mathematical physics and probability calculus at the
Sorbonne (replacing Gabriel Lippmann), and was elected President of
the French Mathematical Society. The next year he was selected to re-
place Edmond Laguerre in the geometry section of the Academy of Sci-
ences at the Institut de France.

Once a member of the Institut, Poincaré published his first essay on
the foundations of geometry. Strongly influenced by Sophus Lie’s writ-
ings, the paper concludes with a reflection on the relation between ge-
ometry and the physical space of experience (1887, 91):

[I]n nature there exist remarkable bodies called solids and experience teach-
es us that the diverse motions these bodies can perform are related very
closely to the diverse operations of the [Euclid] group. …

Thus the fundamental hypotheses of geometry are not experimental
facts, and yet it is the observation of certain physical phenomena that
picks them out from all possible hypotheses. [Original emphasis.]

Geometry is then essentially an abstract science, being the study of
groups of transformations. Observation of displaced solids suggests the
transformations of one particular geometry, corresponding to the Euclid
group. Or as Poincaré put it in a subsequent paper, our experience
“played but a single role: it served as an occasion” (1903, 424).

While Poincaré’s stance on the formal nature of geometry is unam-
biguous in his 1887 essay, he does not reflect on the epistemological sta-
tus of the geometry of physical space. The latter topic is first evoked in
Poincaré’s next essay on the foundations of geometry, which appeared
in Louis Olivier’s Revue g¤n¤rale des sciences pures et appliqu¤es, and
reached a wide readership both in French and English, thanks to a trans-
lation published in Nature.4

4 Poincaré (1891; 1892a). On Poincaré’s collaboration with the periodicals edited
by Louis Olivier and Xavier Léon see (Rollet 2001).
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In the essay “Non-Euclidean geometries,” Poincaré presents his
conventionalist view of the foundations of geometry and physics. Reit-
erating his belief in the abstract nature of geometry, Poincaré explains
why geometry cannot be an experimental science (1891, 773):

If geometry were an experimental science, it would not be an exact science,
it would be subject to incessant revision. And that is not all : it would even
today be shown to be erroneous, since we know that rigorously invariable
solids do not exist.

If we were to adopt the empiricist approach to geometry, Poincaré tells
his readers in the latter passage, we would eliminate Euclidean geometry
straightaway as a candidate geometry for physical space, since there are
no perfectly-rigid solids in this space.

When Poincaré points out this conflict between the motion of solids
and Euclidean geometry, he bruises our confidence in the truth of the
geometric axioms. Worse news is yet to come, however, as Poincaré
goes on to tell us that the axioms have no truth-value at all (p. 773):

The geometrical axioms are then neither synthetic a priori judgments nor experimen-
tal facts. They are conventions ; our choice, out of all possible conventions, is
guided by experimental facts ; but it remains free and is limited only by the
necessity of avoiding all contradiction … In other words, the axioms of ge-
ometry … are but definitions in disguise. This being so, what should one think
of the question: “Is Euclidean geometry true?” It is meaningless. [Original
emphasis.]

In other words, as Nabonnand (2000) observes, inasmuch as Euclidean
geometry is an abstract science, the truth of its theorems may not be as-
certained by empirical means.

The same is true for the axioms of non-Euclidean geometry, and to
argue the point, Poincaré asks what would happen if the parallax of a
given star were observed to have a negative value (corresponding to el-
liptic space), or if all parallaxes were observed to be greater than a certain
positive value (corresponding to hyperbolic space). The answer seems
obvious to Poincaré: rather than consider space to be curved, scientists
would find it “more advantageous” to suppose that starlight does not al-
ways propagate rectilinearly (1891, 774). Poincaré implicitly assumes an
alternative, non-Maxwellian optics to be feasible; he later extends the
latter assumption to all of physics, by claiming that any experiment at
all can be interpreted with respect to either Euclidean or hyperbolic
space.
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There are two aspects to Poincaré’s conjecture I want to underline.
First, scientists are free in Poincaré’s scheme to choose between the two
couples: Euclidean geometry and non-Maxwellian optics, or non-Eu-
clidean geometry and Maxwellian optics. Either way, the geometry of
space and the laws of optics result from a convention. In essentials, as
Torretti notes (1984, 169), Poincaré’s view is equivalent to that of
von Helmholtz, to whom Poincaré refers his readers.5 It also previews
Pierre Duhem’s holistic view of the structure of physical theory
(1906), which led Duhem to reject the possibility of crucial experi-
ments.

Modern commentators like Zahar (2001, 100) understand Poin-
caré’s conjecture to imply a “geometry plus physics” argument ranging
over all possible geometries, including those of variable curvature, of the
type Einstein employed in his general theory of relativity (1915). For
Poincaré and others in the 1890s, however, geometries of constant cur-
vature (i. e., Euclidean, hyperbolic, and spherical geometries) were the
only plausible candidate geometries for physical space. The motivation
for the latter restriction came from physics, which requires a theory
of measurement. In the classical physics of von Helmholtz and Poincaré,
the act of measurement required free mobility of solids. In turn, free
mobility of solids is possible only in Riemannian geometries of constant
curvature. As we will see in § 4, the motivation for relaxing the princi-
ple of free mobility of solids also came from physics: the physics of rel-
ativity.

In the second place, while Poincaré recognized the freedom of sci-
entists to choose a non-Euclidean geometry, he seems convinced that
they would never do so. Poincaré’s overweening confidence in the con-
venience of Euclidean geometry for representing natural phenomena,
come what may, separates him from most physicists and mathematicians
of the late nineteenth century. It is often considered the weak link in
Poincaré’s philosophy of geometry.6

5 Poincaré’s notion of phenomenal space as an inseparable couple formed by ge-
ometry and physics was foreshadowed by von Helmholtz’s appeal to Lipschitz’s
argument in favor of a dynamics of hyperbolic space, based on the applicability
of Hamilton’s principle to spaces of nonzero constant curvature (1995, 238).
On von Helmholtz’s empiricist philosophy of mathematics and geometry, see
Volkert (1996) and Schiemann (1997). On Poincaré’s reading of von Helm-
holtz, see Heinzmann (2001).

6 Poincaré’s failure to convince scientists and philosophers to adopt his doctrine is
noted by Torretti (1984, 256); his failure to convince mathematicians and phys-
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Poincaré presented a number of arguments in favor of the conven-
ience of Euclidean geometry, none of which could be considered com-
pelling. One putative advantage of Euclidean geometry is its simplicity,
which Poincaré characterized algebraically (Torretti 1984, 335). In the
Euclid group, certain “displacements are interchangeable with one an-
other, which is not true of the corresponding displacements of the Lo-
bachevsky group” (1898b, 43). In other words, the Euclid group has a
proper normal subgroup corresponding to translations, and according to
this definition of simplicity, it is simpler than the hyperbolic group. Al-
ternative criteria for simplicity abound, however, and Poincaré admitted
quite freely that we would switch geometries, if confronted with a
“considerably different” empirical base (1898b, 42). In sum, Poincaré’s
stance on the convenience of Euclidean geometry was no dogma. Rath-
er, it reflected his great confidence in the future stability of the establish-
ed baseline of experimental results, and in the explicative power of the
principles of physics then in vigor.

Just what sort of experimental results might have led Poincaré to
forgo Euclidean geometry at the close of the nineteenth century? Ob-
servations of stellar parallax could not have forced such a change, as we
have seen. Poincaré did not elaborate the possibilities; instead, he argued
for the possibility of doing physics in hyperbolic space, which was an
area of research little explored by nineteenth-century mathematicians
(Walter 1999b, 92).7

Poincaré’s view on the question of the equivalence of Euclidean and
hyperbolic geometry is subject to debate. According to Ben-Menahem
(2006, 41), Poincaré held all theorems of Euclidean geometry to have
counterparts in hyperbolic geometry (and vice-versa). This equivalence
in theorems would provide a template of sorts for the elaboration of a
physics of hyperbolic space. Yet Poincaré never actually proposed
such an equivalence (Torretti 1984, 336). Instead, in an attempt to char-
acterize quadratic geometries, Poincaré wrote that in hyperbolic geom-
etry we have a set of theorems “analogous” to those of Euclidean geom-
etry (1887, 205).

What Poincaré offered in favor of his doctrine of space was a clever
thought experiment that builds on a suggestion made by von Helm-

icists is shown by Walter (1997). For the characterization of the doctrine as a
weak link, see Vuillemin (1972, 179) and Sklar (1974, 93).

7 Exceptions include Eugenio Beltrami, Wilhelm Killing, and Rudolf Lipshitz,
all of whom contributed to the mechanics of non-Euclidean space.
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holtz. By wearing glasses fitted with convex lenses, von Helmholtz
wrote (1995, 242), we can experience the optical effects of a world in
which the natural geometry of space is non-Euclidean. Poincaré
(1892b) deftly modified von Helmholtz’s example by imagining an ap-
parently non-Euclidean world, that of a heated sphere. In this way,
Poincaré refocused his reader’s attention away from intuition – a subject
dear to von Helmholtz – and toward a subject of his own predilection,
the conventionality of laws of physics.

The heated sphere model of hyperbolic space fascinated Poincaré’s
contemporaries. Imagine a hollow sphere of radius R, heated in such
a way that the absolute temperature at a point located a distance r
from the sphere’s center is proportional to R2-r2.8 All bodies inside
the sphere have the same coefficient of thermal dilation, and reach ther-
mal equilibrium instantaneously. The atmosphere is such that the index
of refraction is everywhere proportional to the reciprocal of tempera-
ture, and the trajectory of a light ray is described by an arc orthogonal
to the enclosing sphere. The same arcs are materialized by the shortest
distance between two points, as measured by a ruler, and the axis of ro-
tation of a solid body. Poincaré suggests that the natives of such a world
would adopt hyperbolic geometry for their measurements.

Highly contrived from a physical standpoint, Poincaré’s model con-
veys quite well the idea that the adoption of Euclidean geometry is con-
ditioned by certain features of our environment (such as the motion of
solids). What is more, Poincaré (1895, 646) claimed that if physicists
from planet Earth were transported to the heated world, they would
continue to use Euclidean geometry, on the grounds that this would
be the most convenient option available to them.9

The latter thesis is contested by Howard Stein (1987) on the basis of
the extreme complexity of doing physics with Euclidean geometry in
such a world. A terrestrial, pre-relativist physicist in the heated sphere
would be led at first to posit a universal deforming force, only to find
that the other laws she contrives conflict with those elaborated by phys-
icists located in other regions of the world. Implicitly, Stein introduces a
meta-theoretical commitment to a unified physics, and while Poincaré
valued unified, interpenetrating explanations of physical phenomena, he

8 For a rigorous discussion of the heated sphere’s two-dimensional counterpart,
the heated disk, see Barankin (1942).

9 At first, Poincaré (1892b) maintained only that the sphere’s natives would adopt
non-Euclidean geometry.
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recognized that such values are not imposed on us by the same phenom-
ena. His doctrine of physical space affirms only that Earth-educated
physicists can use Euclidean geometry inside the heated sphere, not
that they must do so, or even that it is in their best interest to do so. As
mentioned above, Poincaré readily admitted that physicists would
forgo Euclidean geometry if the circumstances called for it. At the
turn of the century, he was also quite sure that such circumstances
would never arise.

2. Poincaré’s Typology of Hypotheses

Poincaré’s mature philosophy of science assigns a leading role to hy-
potheses. In the previous section, we recalled his belief that the axioms
of geometry are conventions (or definitions in disguise), and not hy-
potheses about the behavior of light rays or solid bodies. In this context,
the question naturally arises of the relation between hypothesis and con-
vention.

Hypotheses, according to Poincaré, are not all created equal. Some
are more influential than others in determining the course of science,
and Poincaré found it useful to categorize the types of hypothesis he en-
countered according to their truth domain. An important impetus to
this theorization of scientific hypotheses was provided by Heinrich
Hertz’s Principles of Mechanics (1894), which made a singular impression
on him, in virtue of its epistemic structure, and innovative use of hy-
pothesis (Poincaré 1897, 743):

While the principles of dynamics have been exposed in many ways, the dis-
tinction between definition, experimental truth, and mathematical theorem
has never been sufficient. This distinction is still not perfectly clear in the
Hertzian system, and what is more, it introduces a fourth element: hypoth-
esis.

This fourth element corresponds to Hertz’s assumption of hidden mass-
es, which allowed him to forgo the concept of force. What strikes Poin-
caré above all is that Hertz’s assumption is neither definition, nor exper-
imental fact, nor theorem. It is what Poincaré would later call an “indif-
ferent” hypothesis, in that an alternative hypothesis, or set of hypothe-
ses, leads to the same result.

While Hertz’s hypothesis of hidden masses was far too bold for
Poincaré’s taste, it inspired a new understanding of the role of hypoth-
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esis in physics, first unveiled at the international congress of physics held
in Paris at the turn of the century. This was the first of two different
typologies, which are now addressed in turn.

Poincaré (1900, 1166) identifies three sorts of hypotheses: general-
izations, indifferent hypotheses, and natural hypotheses. The first sort is
distinguished by the property of susceptibility to experimental corrobo-
ration. Once corroborated by experiment, these hypotheses become
“fertile truths,” without which there can be no increase in knowledge.

The second type of hypothesis, or “indifferent” hypothesis, serves to
“fix our thought,” but constitutes a non-unique premise in a deductive
chain. Examples of indifferent hypotheses include the hidden masses of
Hertz’s mechanics, and the physical interpretation of the axial and polar
vectors in classical optics. It can happen that a theorist prefers one hy-
pothesis to another, to simplify a calculation, for instance, but experi-
mental corroboration of the theory can have no bearing on the truth
of the chosen hypothesis.

The third type of hypothesis is the “wholly natural” hypothesis.
This vaguely-defined category concerns what might be described as ex-
perimental rules of thumb, without which measurement is nigh impos-
sible. Natural hypotheses are accordingly the “last we ought to aban-
don.” They include the law of continuity of cause and effect, and the
vanishing force of very remote bodies. The latter hypothesis allows
for multiple independent dynamical systems, as we shall see in § 4.

Poincaré’s second typology of hypotheses appeared two years after
the first, in the introduction to a collection of philosophical essays, La
Science et l’hypothºse (1902). This revised typology features three catego-
ries, including the generalizations and indifferent hypotheses of the first
typology, and excluding natural hypotheses. Poincaré may have folded
natural hypotheses implicitly into the category of generalizations,
since the former are, like the latter, accessible in principle to experi-
ment. It is also possible, however, that neither typology was intended
to be exhaustive, as suggested by Poincaré’s decision to reprint his
first typology in the ninth chapter of La Science et l’hypothºse.

A new type of hypothesis appears in Poincaré’s 1902 typology: the
“apparent” hypothesis. In fact, his third type of hypothesis is not a hy-
pothesis at all, but a definition, or a “convention in disguise.” Conven-
tions, or apparent hypotheses, are essential to the activity of theorization
in Poincaré’s model of science.

For what follows, one final point needs to be underlined concerning
the relation of Type I hypotheses (or hypotheses susceptible to experi-
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mental confirmation) to Type III hypotheses (or conventions). A phys-
ical law, if corroborated by experiment, can become a convention. Such
a statutory evolution occurs when the law in question is deemed suffi-
ciently fruitful to warrant protection from new experimental tests. Con-
ventions are of great utility to the pursuit of scientific knowledge, but
they are only definitions, and as such, may not be refuted by experi-
ment. As an example, take the law of inertia, which Poincaré considers
to be a convention. Any particular observation tending to disconfirm
the law of inertia, Poincaré holds, would be dealt with by invoking
the effect of invisible bodies, rather than by discarding the law of inertia
(1902, 117).

3. Relativity Theory and the Foundations of Geometry

On 5 June 1905, Poincaré presented a note to the French Academy of
Sciences that put forth the foundations of the theory of relativity. It is in
this short paper that Poincaré expressed the Lorentz transformations in
their modern form for the first time, along with the current density
transformations (correcting Lorentz). In the 47-page memoir “On the
dynamics of the electron” announced by this note, and that appeared
in January 1906, Poincaré wrote the velocity transformations, character-
ized the Lie-algebra of the Lorentz group, and introduced a four-di-
mensional space in which three coordinate axes are real, and one is
imaginary, inaugurating the era of four-dimensional physics. Building
on Poincaré’s ideas as well as those of Hertz, Lorentz, Einstein and
Planck, the Göttingen mathematician Hermann Minkowski elaborated
the theory of spacetime, which profoundly marked the philosophy of
space and time, and was instrumental to Einstein’s discovery of the gen-
eral theory of relativity (Walter 2007).

Poincaré’s contributions to the theory of relativity are well known
to historians, but it is not entirely clear how Poincaré understood the
theory of relativity to impinge upon his doctrine of space. In part, at
least, this is Poincaré’s doing, as he did not express himself clearly on
this topic. As a result, commentators have offered a wide variety of in-
terpretations of the relation between Poincaré’s conventionalist philos-
ophy and his discovery and interpretation of the theory of relativity.10

10 For references, and an insightful comparison of Poincaré’s and Einstein’s phil-
osophical approaches to relativity theory, see Paty (1993).
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Although Poincaré does not comment in his 1906 memoir on the
eventual influence of the principle of relativity on our conceptions of
space and time, he points out an important consequence for the theory
of measurement (1906, 132):

How do we go about measuring? The first response will be: we transport
objects considered to be invariable solids, one on top of the other. But that
is no longer true in the current theory if we admit the Lorentzian contrac-
tion. In this theory, two lengths are equal, by definition, if they are spanned
by light in equal times.

Poincaré spies a conflict between the traditional notion of rigidity and
the principle of relativity, in that Lorentz-FitzGerald contraction appears
to preclude the transport of rigid rulers upon which length measurement
depends. Length congruence in Lorentz’s theory depends not on the
free mobility of invariable solids, but on the light standard.

Does this standard conflict necessarily with Poincaré’s doctrine of
space? Poincaré will provide an answer to the latter question, but
only in the wake of spacetime theory, as discussed in the next section.

4. The Principle of Physical Relativity

From 1905 to the end of his life (on 17 July 1912), Poincaré comment-
ed often on the theory of relativity, but only twice on the four-dimen-
sional interpretation he had inaugurated. At first, he compared a possible
four-dimensional language for physics to Hertz’s mechanics, and ob-
served that working out the corresponding formalism would entail
“much pain for little profit” (1907). Poincaré’s first and last words on
the philosophical significance of spacetime were delivered on 4 May
1912, as the second in a series of four lectures at the University of Lon-
don. His remarks were published posthumously (1912; 1963, 97–109)
as “L’espace et le temps,” a title recalling that of Minkowski’s celebrated
1908 lecture in Cologne, “Raum und Zeit.”

Although Poincaré might have derived satisfaction from the fact that
Minkowski had based his spacetime theory on essentially the same four-
dimensional geometry introduced in Poincaré’s 1906 memoir, the Göt-
tingen mathematician had noisily promoted an anti-conventionalist
view of physical space and time, which was surely anathema to him
(Walter 2009). Like Poincaré, Minkowski recognized that the new me-
chanics admitted no rigid bodies; unlike Poincaré, Minkowski present-
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ed the new intuitions (Anschauungen) of space and time not as conven-
tions, but as the result of circumstances both empirical and formal that
“forced themselves” upon scientists (1909, 79).

This is just the sort of anti-conventionalist view that Poincaré targets
in the opening of his London lecture on space and time (1963, 99):

Is not the principle of relativity, as Lorentz conceives it, going to impose an
entirely new conception of space and time, and force us thereby to abandon
conclusions that may have seemed established?

Poincaré sees in Lorentz’s principle of relativity a menace to his doctrine
of physical space. But what does Poincaré take to be Lorentz’s principle
of relativity? He defines the latter in terms of group invariance (p. 108):

The old form of the principle of relativity had to be abandoned; it is re-
placed by Lorentz’s principle of relativity. The transformations of the “Lor-
entz group” are those that leave unaltered the differential equations of dy-
namics.

According to Poincaré, Lorentz’s principle of relativity is just Lorentz
covariance, or what was then understood to be a succinct statement
of the content of Einstein’s special theory of relativity. Poincaré is pois-
ed to reconsider his brief observation of 1905 on the theory of measure-
ment in Lorentz’s theory, mentioned above (§ 3), and to show how his
doctrine of physical space stands with respect to the theory of relativity.

Poincaré’s views on how relativity theory interferes with classical
concepts of space and time have significant historical interest, due to
his foundational contributions to this theory. His London lecture on
space and time represents his final word on this topic, and sets forth a
fundamental change in his doctrine of physical space, by extending
this doctrine to physical time. This extension is not well known, and
is the focus of the following reconstruction of Poincaré’s argument.

According to Poincaré, there is a principle of relativity, which he
calls the “principle of physical relativity” (PPR), that exists in two
forms. One of these is the Lorentz form, which Poincaré refers to as
Lorentz’s principle of relativity. The other form is what I will refer to
as the Galilei form, because it is defined by Galilei group invariance.
The PPR holds (p. 102) that the differential equations by which we ex-
press physical laws

are altered neither by a change of fixed rectangular coordinate axes, nor by
a change of temporal origin, nor by a substitution of mobile rectangular
axes, the motion of which is a uniform, rectilinear translation.
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In modern terms, the PPR is equivalent to covariance with respect to a
certain group of transformations. Poincaré distinguishes two groups in
this context, corresponding to what were later known as the inhomoge-
neous Galilei transformations of the Galilei group, and the inhomoge-
neous Lorentz transformations of the Poincaré group.

The PPR has two main features, one of which is its testability. It is
what Poincaré describes as an “experimental truth,” i. e., a proposition
susceptible to experimental disconfirmation. Recalling Poincaré’s typol-
ogy of hypotheses (see above, § 2), the PPR is a Type I hypothesis. He
expresses its empirical meaning in terms of two corollaries (p. 106):

The reciprocal action of two bodies (or mechanical systems)
(1)tends to zero as spatial separation increases indefinitely.

Two remote worlds behave as if independent. (2)

Let us examine these corollaries one at a time. The first has a precedent
in the 1900 lecture mentioned above, in which Poincaré first sought to
characterize the sorts of hypotheses encountered in science. To hold
that the “influence of very distant bodies is negligible,” Poincaré
wrote (1900, 1166), was a “natural” hypothesis. This natural hypothesis
was announced some five years before the discovery of relativity theory,
and twelve years before Poincaré updated his formula, ostensibly to ac-
commodate the new physics of inertial frames.

The motivation for (1) remained the same over this twelve-year
span. This particular natural hypothesis was designed to legislate away
the effects of all long-range forces that fall off with increasing separation
(such as gravitational and electromagnetic forces), and to create thereby
the possibility of separate mechanical systems. As a consequence of what
Poincaré calls the “principle of psychological relativity,” recognizing the
conventional nature of measurements of distance and duration, the ex-
istence of distant stars renders inertial frames of reference “purely con-
ventional,” obliging us, when we employ the concept of a frame of ref-
erence, to forgo “absolute rigor” (p. 103).

The second corollary of the PPR has, like the first, a clear precedent
in Poincaré’s philosophy. In La Science et l’hypothºse, Poincaré analyzed
the possibility of generalizing the Galilean principle of relative motion
to include rotating frames of reference. If we want to solve a two-
body problem based on Newton’s Law, Poincaré remarked, we need
to know the positions and velocities of the two gravitating bodies, as
well as the corresponding initial values, along with “something else.” It
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is this final missing bit of information that worried Poincaré, as Earman
observes (1989, 86). This solution element could be either the initial
values of acceleration, or the area constant, or the absolute orientation
of the universe, or the rate of change of orientation, or the position
or velocity of Carl Neumann’s Body Alpha. “We have,” Poincaré wist-
fully concluded his earlier analysis, “but a choice of hypotheses” (1902,
137).

Poincaré’s position advanced in this case, as well as for (1). His Lon-
don lecture proposes a new argument in favor of (2), observing in es-
sence, as Kerszberg (1989, 139) notes, that the missing solution element
could be objectively determined, if only we disposed of not one uni-
verse, but of several universes. Poincaré imagines the situation as follows
(p. 105):

Instead of considering the entire universe, let’s imagine small, separate
worlds, visible to one another but free from outside mechanical action. If
one of these worlds spins, we will see it spin, and recognize that the
value to be assigned to the constant just mentioned depends on the spin ve-
locity, and in this way, the convention habitually adopted by dynamicists
will be justified.

The PPR, Poincaré realizes here, provides a way out of his earlier di-
lemma, as it implies the existence of multiple independent mechanical
systems in the universe, as expressed by (2).

Along with testability, a second salient feature of the PPR is its ca-
pacity to define space and time. The PPR “can serve to define space,”
by virtue of the fact that we perform measurements (or alternatively, in
Poincaré’s terminology, “construct space”) by displacing solids and de-
fining length congruence as coincidence of figures. The PPR admits the
invariance under displacement of the form and dimensions of solids and
other sufficiently-isolated mechanical systems, and thereby provides a
foundation for length measurement. In Poincaré’s words, the PPR pro-
vides us with a “new instrument of measurement” (p. 106). Each pos-
sible displacement of a solid corresponds to a certain transformation,
which leaves the form and dimensions of a given figure invariant.
Such transformations, when taken together, form a group: the group
of motions of invariable solids. While the principle of free mobility of
solids selects any of three motion groups (Euclid, hyperbolic, spherical),
the Galilei form of the PPR selects only one of these: the Euclid group.
One imagines that Poincaré was uncomfortable with this particular con-
sequence of the PPR, which he did not mention, but could not have
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ignored. Instead, he stressed the fact that, like the principle of free mo-
bility of solids, the PPR provides a foundation for geometry.11

Poincaré justified his replacement of the principle of free mobility of
solids by the principle of form-invariance of the differential equations of
mechanics in the following way. The motion group of invariable solids
on one hand, and the symmetry group of mechanics on the other, give
rise to conceptions of space that are not “essentially different” in Poin-
caré’s view, because both groups define space in such a way that solids
are unaltered in form when displaced. The role played by solid bodies in
the old conception of the foundations of geometry goes over to the
more general notion of a mechanical system. In fact, by defining
space in terms of the motion group of solids, we affirm that the equa-
tions of equilibrium of solids do not vary upon displacement. In other
words, we define space in such a way that the equilibrium equations
of solids are unaltered by a change of axes. These equations of equilibri-
um are but a special case of the general equations of dynamics, Poincaré
explains, and “according to the principle of physical relativity, they must
not be modified by this change of axes.” There is, consequently, no es-
sential difference for Poincaré between the old way of defining space
(postulating free mobility of solids), and the new one (postulating the
symmetry group of mechanics), as far as solids are concerned.

Leaving solids behind, there are two significant differences between
these two groups. The symmetry group of mechanics offers greater cov-
erage than the motion group of solids, ranging over both solids and me-
chanical systems. This juxtaposition of the Euclid group and the sym-
metry group of mechanics was probably inspired by Minkowski’s pre-
sentation of the theory of spacetime, which contrasted the Euclid and
Galilei groups, although Poincaré neglected to mention Minkowski
by name.12

The conception of space based on the symmetry group of mechanics
differs from the one based on the Euclid group in a second respect, in
that it

11 I differ here from Friedman (2008, 214), for whom “Poincaré’s conception of
space and geometry is entirely based … on the principle of free mobility first
formulated by von Helmholtz and then brought to precise mathematical fru-
ition in the Helmholtz-Lie theorem.”

12 Minkowski likewise neglected to mention Poincaré in his Cologne lecture, but
acknowledged his contributions to relativity, along with those of Lorentz, Ein-
stein, and Planck, in earlier papers (Walter 1999a).

Scott Walter208



defines not only space, it defines time. It tells us the meaning of two simul-
taneous instants, of two equal times, or of a time twice as great as another.

Both space and time are defined by the new view based on the symme-
try group of mechanics, and this is significant for students of Poincaré’s
philosophy, as Paty (1996, 129) underlines, because he had never before
admitted that the choice of an invariance group could define space and
time. By preferring the symmetry group of mechanics to the motion
group of solids, Poincaré considers the laws of mechanics to be more
fundamental to our understanding of the world than the axioms of ge-
ometry. Put another way, Poincaré finds spacetime to be more funda-
mental than ordinary Euclidean space.

It may appear at this point that Poincaré has decided to renounce his
doctrine of physical space in favor of the PPR. This is not so. The PPR,
he explains, is an “experimental fact,” and as such, it is “susceptible to
incessant revision.” The type of revision Poincaré has in mind implies
a modification of the geometry of physical space. He was probably
thinking of Einstein’s program, announced in 1907, to generalize the
principle of relativity to uniformly-accelerated frames of reference,
and which led him to predict that rays of starlight must bend around
the sun. What worries Poincaré is not so much a modification of the
PPR as the consequential revision of the geometry of space. For the ge-
ometry of space to become immune to revision, the PPR must itself be-
come immune to revision. In Poincaré’s philosophical scheme, the only
way to render an empirical law immune to revision is to promote it to
conventional status. Naturally, this is what Poincaré decides to do, when
he writes (p. 107):

[Geometry] must become a convention again, [and] the principle of rela-
tivity must be considered as a convention.

To drive this point home, Poincaré imagines a long-range force that di-
minishes at first with distance, then increases, producing motion incon-
sistent with the PPR’s first empirical corollary (1). The PPR would then
“appear to us as a convention” (le principe se pr¤sente � nous comme une con-
vention, p. 107), rather than as a Type I hypothesis, ostensibly because
we would take measures to save the PPR from any experimental threat,
by introducing a hidden mechanism, for example.

What Poincaré asks us to do, in other words, is to reconsider the
epistemic status of the PPR, understood as an experimental, Type I hy-
pothesis, and to promote it to a Type III, or apparent hypothesis (i. e., a
convention). This promotion means that henceforth, the PPR is im-
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mune to empirical disconfirmation. It also means that the geometry of
physical space cannot be determined empirically, in complete compli-
ance with Poincaré’s doctrine of physical space.

Having explained how the doctrine of space may be salvaged by el-
evating the PPR to conventional status, Poincaré finally entertains a dis-
cussion of the Lorentz form of the PPR. The “recent progress in phys-
ics” has brought about a “revolution”: Lorentz’s principle has replaced
the old one. To paraphrase in modern terms, Lorentz covariance has re-
placed Galilei covariance.

In the same way as the PPR with Galilei covariance can define space
and time, the PPR with Lorentz covariance can define space and time
(p. 108):

It is as if time were a fourth dimension of space; and as if the four-dimen-
sional space resulting from the combination of ordinary space and time
could rotate not only about an ordinary space axis, in such a way that
time is unaltered, but about any axis at all. To get a mathematically exact
comparison we would have to assign purely imaginary values to this fourth
space coordinate; the four coordinates of a point of our new space would
not be x, y, z, and t, but x, y, z, and t

ffiffiffiffiffiffiffi¢1p
.

A four-dimensional vector space corresponding to the above description
was introduced by Poincaré in the final section of his 1906 memoir on
the dynamics of the electron, as a means of identifying Lorentz-invariant
quantities to be used in a relativistic law of gravitational attraction. The
new space he refers to in his London lecture, however, is not his own,
but that of Minkowski, as Paty observes (1996, 132). This much may
be inferred from Poincaré’s remark that in the new mechanics, and con-
trary to his earlier (pre-relativistic) analysis of simultaneity relations
(1898a), there are events which can be neither the cause nor the effect
of other given events. It was Minkowski who first identified such events,
situated in a region of spacetime unique to what he called “spacelike”
(raumartigen) vectors (Fig. 1). This insight was essentially tied to Minkow-
ski’s spacetime theory, providing apodictic proof of its fertility.13

Poincaré says no more about Minkowski spacetime, which in 1912
was not yet well-known in Great Britain, but had already captured the
attention of relativists in Germany and France, including Poincaré’s for-
mer students Paul Langevin, a physicist at the Collège de France, and

13 Minkowski (1908, § 6; 1909, § III). Poincaré did not employ the Minkowskian
term “spacetime” or any of its linguistic variants.
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Émile Borel, a mathematician at the Sorbonne. He closes his lecture
with the following words (p. 109):

What will our stance be with respect to these new conceptions? Are we
going to be forced to modify our conclusions? Of course not: we adopted
a convention because it seemed convenient, and we said that nothing could
oblige us to abandon it. Nowadays certain physicists want to adopt a new
convention. It’s not that they are obliged to do so, it’s just that they judge
the new convention to be more convenient. Those who feel differently
may legitimately retain the old convention, so as not to disturb their habits.
Between us, I believe this is what they will do for a good while longer.

In the wake of relativity theory, there is, as ever, no fact to the matter of
the geometry of physical space, just a principle of (physical) relativity
with a choice of invariance group. Poincaré insists that his earlier con-
clusions need not be modified, and this is true, but in fact he has re-
placed a convention on space with a convention on spacetime.

The above-cited conclusion of Poincaré’s London lecture on space
and time raises a number of questions. First of all, does Poincaré’s adop-
tion of the PPR with Galilei covariance signal his disavowal of Lorentz
covariance? Not at all : Poincaré distinguishes, as shown above, between
the PPR as a Type I hypothesis, on one hand, and as a definition of
spacetime, on the other. Undoubtedly, the same distinction applies if
one associates the PPR with the Galilei group or the Lorentz group.
By 1912, after some public hesitation, Poincaré had convinced himself
of the experimental soundness of the new mechanics based on Lorentz
covariance (1963, 110–111). The PPR with Lorentz covariance was
then a viable candidate for elevation to conventional status. But instead
of defining space and time in virtue of Lorentz covariance, he prefers to
define space and time in virtue of Galilei covariance.

Was such a position coherent at the time? Galilei and Lorentz con-
ventions apply to the same inertial frames, and the quantities measured

Figure 1: Lightcones in Minkowski spacetime (Minkowski 1909)
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therein are either real or apparent, depending on the convention. Poin-
caré’s interpretation of such quantities remained what we might call
“apparentistic,” in that the only true quantities were those of the
ether frame. In principle, as Carl Neumann admitted in 1869, any iner-
tial frame at all may be designated as the absolute (or ether) frame (Bar-
bour 1989, 653), although Poincaré does not spell this out. Instead, he
maintains (p. 99) that deformation of measuring devices due to motion
with respect to absolute space can occur in such a way that this motion
can never be detected.14 The latter proposition is itself a corollary of the
PPR, although Poincaré does not present it as such.

From a superficial point of view, Poincaré’s position may appear in-
consistent, in that he postulates the PPR with Galilei covariance (or
Galilei spacetime) while affirming the experimental validity of Lorentz
covariance. If we recall his typology of hypotheses, however, the con-
sistency of Poincaré’s view is readily apparent. Considered as a Type I
hypothesis, Lorentz covariance is an open question for experimenters.
Consistency requires only that Lorentz-transformed space and time co-
ordinates be interpreted with respect to the Galilei version of the PPR,
the latter principle being understood as a Type III hypothesis. Poincaré
satisfies this minimal requirement by referring to quantities measured in
inertial frames as “apparent” quantities, with the “true” quantities be-
longing to the ether frame.

If we grant that Poincaré’s defense of Galilei spacetime is both rel-
ativist and consistent, it may still appear convoluted, in that one could
forgo the indirection of apparentism by adopting the Lorentz version
of the PPR (or Minkowski spacetime). By doing so, quantities meas-
ured in inertial frames are “true,” and the concept of ether is rendered
wholly superfluous. I suspect, however, that in 1912 Poincaré’s position
appeared less convoluted to most physicists than the latter one, due to
the conceptual inertia of three centuries of uncritical acceptance of ab-
solute space and time.

The PPR with Lorentz covariance, attributed by Poincaré to “cer-
tain physicists,” defines space and time in terms of a four-dimensional
Minkowski spacetime geometry. The leading proponents of Minkow-

14 For a reevaluation of Poincaré’s dynamic approach to relativity, see Brown
(2005). Although Brown claims Poincaré never recognized time dilation
(p. 147), this effect appears to have been no less real for him than that of length
contraction. See, for example, Poincaré’s remarks on “The new mechanics,”
delivered in Lille on 2 August 1909 (1909, 173).
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ski’s spacetime theory in 1912 included Poincaré’s correspondent Ar-
nold Sommerfeld, Minkowski’s former students Max Born, Max von
Laue, Gunnar Nordström, and Theodor Kaluza, Minkowski’s former
colleagues Max Abraham and Gustav Herglotz, the Greifswald physicist
Gustav Mie, and the mathematical physicist Philipp Frank in Vienna.
One has to wonder about Poincaré’s characterization of the spacetime
theorists understanding of spacetime. Did these theorists consider Min-
kowski spacetime to be a convention in Poincaré’s sense? If this were
so, Lorentz covariance could no longer have been a subject of experi-
ment for them. In fact, well before Poincaré’s speech, and well after,
several physicists and astronomers were engaged in verifying conse-
quences of the theory of relativity. Consequently, Poincaré’s attribution
of a conventional view of space and time to spacetime theorists is prob-
ably best understood as wishful thinking.

Einstein, like most physicists at the time, understood Lorentz cova-
riance as a hypothesis subject to experimental corroboration. In a letter
to his friend Friedrich Adler, a Machian anti-relativist imprisoned for
the cold-blooded assassination of the Prime Minister of the Austro-
Hungarian Empire, Einstein denied that Lorentz covariance was con-
ventional. Referring to the Lorentz transformations in the form

x0 ¼ ‘bðx¢ utÞ y0 ¼ ‘y z0 ¼ ‘z t0 ¼ ‘bðt ¢ ux=c2)

where b =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1¢u2=c2

p
, Einstein focused his argument on the nature of

the constant ‘ :

It is clear in any event that the choice of ‘ implies no mere formal conven-
tion, but a hypothesis characterizing reality … Thus Bucherer, for example,
backed a theory for a while, which comes out of a different choice of ‘.
Nowadays there is no further question of a different choice of ‘, since
the electron’s laws of motion have been verified with increased precision.

Einstein does not refer to Poincaré in his letter to Adler, but contempo-
rary correspondence shows that he was familiar with the Frenchman’s
philosophy of science. The cited passage expresses concern over the
epistemological status of Lorentz covariance, which Einstein considers
to be a well-verified physical hypothesis, and not a mere definition or
convention.15

15 Einstein to F. Adler, 29. 08. 1918 (Einstein 1998, Doc. 628). A month after
writing to Adler, Einstein agreed with the German mathematician Eduard
Study’s criticism of Poincaré’s doctrine of space; see Einstein to E. Study,
25.09.1918 (Einstein 1998, Doc. 624). But a few months later, Einstein re-
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5. Why Galilei Spacetime?

The two principal approaches to special relativity in 1912, associated, on
one hand, with Lorentz and Poincaré, and on the other hand, with Ein-
stein and Minkowski, may be distinguished by their respective ontolo-
gies, but also by their performance. We have seen that Poincaré consid-
ered two forms of the principle of physical relativity: a Galilean form,
defining Galilei spacetime, and a Lorentzian form, defining Minkowski
spacetime. We have also seen that Poincaré preferred one form to the
other. Since his reasons for preferring Galilei spacetime to Minkowski
spacetime are not readily discernible in his London lecture on space
and time, we are prompted to look elsewhere in order to understand
his view.

The first historian to hazard an explanation for Poincaré’s choice
was Gerald Holton, who sought to explain Poincaré’s attachment to
the concept of ether as a consequence of his conservative outlook on
science, and described the French mathematician as the “most brilliant
conservator of his day” (1973, 189). Holton seems not to have
known that Poincaré was in his day one of the best-known critics of
the foundations of physics, alongside Ernst Mach and Heinrich Hertz.
Poincaré’s fellow scientists considered him to be the most lucid of the-
oretical physicists, on the leading edge of the latest discoveries (Walter et
al. 2007). In Émile Borel’s opinion, for example, Poincaré “contributed
more than anyone to the creation of what may be called the spirit of
twentieth-century theories of physics, as opposed to those of the nine-
teenth century” (1924). In light of such views, it seems impossible to
explain Poincaré’s attachment to the ether – or Galilei spacetime – as
the result of a conservative tendency.

Recent studies of Poincaré’s scientific activity suggest a quite differ-
ent way of understanding his preference for Galilei spacetime. A top
graduate of Paris’s elite, state-run engineering schools, Poincaré was
more skilled than most in the practical arts of civil and mechanical en-
gineering. From the 1890s on he contributed to engineering journals,
taught electrical engineering and urged fellow scientists to “increase
the output of the scientific machine,” as Galison aptly notes (2003,

marked to the philosopher Hans Vaihinger that Poincaré’s view of the role of
Euclidean geometry in science was “wesentlich tiefer” than that of Study (Saß
1979, 319). On Vaihinger and Poincaré, see the contribution by Christophe
Bouriau in the present volume.
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201). In almost identical terms, Poincaré described the scientific role of
theoretical physics, whose duty it was to “guide generalization in such a
way as to increase the output … of science” (1900, 1164).

Polytechnicians like Poincaré were trained to identify the options
most likely to enhance productivity, and while Poincaré certainly had
several evaluative criteria at hand when comparing Galilei and Minkow-
ski spacetime, that of scientific productivity was likely to have been a
leading candidate. From any reasonable standpoint, looking back in
time from 1912, the Galilei convention had as much to recommend
it as the Lorentz convention, since both approaches could claim relativ-
istic theories of the electron, mechanics, electrodynamics of moving
media, and gravitation.

Certain facts of life, however, would have argued against the Galilei
convention. For instance, the publishing trend in theoretical relativity
favored Minkowski spacetime (Walter 1999b), and the brightest
young German and French theorists were either convinced Minkow-
skians, or were, like Einstein, soon to adopt a Minkowskian spacetime
ontology. Poincaré was undoubtedly aware of these facts, and his lecture
in London can be read as an effort to stem the tide of Minkowskian rel-
ativity. It turned out to be his final effort, as his life ended ten weeks
later. He was a skilled and perceptive critic on scientific matters, and
one cannot help but speculate upon how he would have reacted to
two signal developments that took place the year after his death. Of
the two events I have in mind, one would appear to underline the co-
gency of Poincaré’s preference for Galilei spacetime, and the other, its
drawbacks.

The limitations of the Galilei form of the PPR are most obvious
when Einstein’s general theory of relativity is taken into account, the
first elaborate expression of which was Einstein and Großmann’s En-
twurf theory (1913). Like almost all of his contemporaries, Poincaré
was unprepared for a theory of spacetime as a four-dimensional, pseu-
do-Riemannian manifold with curvature determined by the distribution
of matter and energy. In a sense, the ultimate success of Einstein’s theo-
ry was also that of the Lorentz form of the PPR, in that Einstein expect-
ed Lorentz covariance to hold in the limiting case of weak gravitational
fields. At the time of Poincaré’s London lecture, however, the secular
advance of Mercury’s perihelion was an anomaly under both the Galilei
and Lorentz forms of the PPR, as Poincaré was the first to point out
(Walter 2007, 208).
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The second development is that of Niels Bohr’s first model of the
atom, which discarded a central tenet of classical physics by confining
the electron in a hydrogen atom to one of a discrete set of circular or-
bits, in ordinary space and time. Arnold Sommerfeld altered the model
in 1915–1916 to allow for elliptical orbits precessing relativistically, and
found an explanation for the fine structure of the spectral lines of hydro-
gen. In effect, Sommerfeld extended the reach of relativistic dynamics to
the inner regions of the hydrogen atom. As a bonus of sorts, the sophis-
ticated analytical methods developed by Poincaré for celestial mechanics
in the 1890s soon found application in a modified version of the Bohr
atom (Darrigol 1992, chap. 6).

There is ample reason to believe that Poincaré was prepared for a
theory such as Bohr’s. In the fall of 1911, he participated in discussions
of the theory of quanta as a member of the First Solvay Council, along
with Einstein, Planck, Sommerfeld, Nernst and others. As Staley (2005)
observes, Poincaré was struck by the fact that these physicists already re-
ferred to relativistic mechanics as the “old mechanics,” the new me-
chanics being those of energy quanta. Shortly after the Solvay Council,
Poincaré showed (as did Paul Ehrenfest) the quantum hypothesis to be
necessary and sufficient for the establishment of Planck’s law (Prentis
1995). Once Poincaré recognized the mechanics of quanta to be incom-
patible with both ordinary and relativistic mechanics (1963, 111, 125), he
had all the more reason to emphasize the conventional nature of both
Galilei and Minkowski spacetime.

The principle of physical relativity, which encodes a spacetime view
of physical phenomena, was largely ignored in Poincaré’s time, while his
basic insight later informed a great number of investigations in theoret-
ical and mathematical physics. Poincaré’s early study of the role of hy-
pothesis in the physical sciences, inspired in part by his reading of
Hertz’s mechanics (as shown in § 2), served as an essential resource
for his elaboration of the principle of physical relativity, and exemplifies
the close intertwining of philosophical reflection and physical under-
standing at the forefront of research in the natural sciences.
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