David E. Rowe ¢ Tilman Sauer ¢ Scott A. Walter
Editors

Beyond Einstein

Perspectives on Geometry, Gravitation,
and Cosmology in the Twentieth Century

Birkhauser



Editors

David E. Rowe Tilman Sauer

Institut fiir Mathematik Institut fiir Mathematik
Johannes Gutenberg-Universitit Johannes Gutenberg-Universitit
Mainz, Germany Mainz, Germany

Scott A. Walter
Centre Frangois Viete
Université de Nantes
Nantes Cedex, France

ISSN 2381-5833 ISSN 2381-5841 (electronic)
Einstein Studies
ISBN 978-1-4939-7706-2 ISBN 978-1-4939-7708-6 (eBook)

https://doi.org/10.1007/978-1-4939-7708-6
Library of Congress Control Number: 2018944372
Mathematics Subject Classification (2010): 01A60, 81T20, 83C47, 83D05

© Springer Science+Business Media, LLC, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This book is published under the imprint Birkhduser, www.birkhauser-science.com by the registered

company Springer Science+Business Media, LLC part of Springer Nature.
The registered company address is: 233 Spring Street, New York, NY 10013, U.S.A.


https://doi.org/10.1007/978-1-4939-7708-6
http://www.birkhauser-science.com

Chapter 1 ®
Figures of Light in the Early History Qs
of Relativity (1905-1914)

Scott A. Walter

1.1 Introduction

When Albert Einstein first presented his theory of the electrodynamics of moving
bodies (Einstein 1905), he began by explaining how his kinematic assumptions
led to a certain coordinate transformation, soon to be known as the “Lorentz”
transformation. Along the way, the young Einstein affirmed the form invariance
of the equation of a spherical light wave (or light-sphere covariance, for short)
with respect to inertial frames of reference. The introduction of the notion of a
light sphere in this context turned out to be a stroke of genius, as Einstein’s idea
resonated with physicists and mathematicians, and provided a way to understand
the Lorentz transformation, kinematics, simultaneity, and Lorentz covariance of the
laws of physics.

A focus on the light sphere as a heuristic device provides a new perspective on
the reception of relativity theory and on the scientific community’s identification
of Einstein as the theory’s principal architect. Acceptance of relativity theory,
according to the best historical accounts, was not a simple function of having read
Einstein’s paper on the subject.! A detailed understanding of the elements that
turned Einsteinian relativity into a more viable alternative than its rivals is, however,
not yet at hand. Likewise, historians have only recently begun to investigate how
scientists came to recognize Einstein as the author of a distinctive approach to
relativity, both from the point of view of participant histories (Staley 1998) and

For gradualist views of the acceptance of relativity theory see Hirosige (1968), Miller (1981),
and Darrigol (1996, 2000).
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4 S. A. Walter

from that of disciplinary history (Walter 1999a). The latter studies underline the
need for careful analysis when evaluating the rise of Einstein’s reputation in the
scientific community, in that this ascent was accompanied by that of relativity theory
itself.

We know, for example, that the fortunes of relativity theory improved when
Bucherer (1908a) announced the results of electron-deflection experiments in line
with relativist predictions. Einstein’s most influential promoter, Max Planck, himself
a founder of relativistic dynamics, was in Einstein’s view largely responsible for
the attention paid by physicists to relativity theory (Heilbron 1986, 28). Planck
also praised Hermann Minkowski’s four-dimensional approach to relativity, the
introduction of which marked a turning point in the history of relativity (Walter
1999a). There is more than Planck’s praise to tie Einstein’s theory of relativity to
Minkowski’s spacetime theory. Much as the lightcone distinguishes Minkowski’s
theory from earlier theories of space and time, the light sphere was one of the key
objects that set apart Einstein’s theory of relativity (as it became known around
1911) from alternative theories of the electrodynamics of moving bodies.

My account begins with Einstein’s relativity paper of 1905, in which the notion
of the form invariance of the equation of a light sphere was introduced. While
interest in form invariance of the differential equation of light-wave propagation
dates from the 1880s, the idea that a light sphere remains a light sphere for all
inertial observers — with a universal velocity of light — was recognized as a major
conceptual innovation in the fall of 1907, when it was first used to derive the Lorentz
transformation. By then, the light sphere had already been employed in Paris by
Henri Poincaré, along with a second figure of light, the “light ellipsoid,” to illustrate
an alternative to Einsteinian kinematics. Inspired by his readings of Einstein and
Poincaré, Minkowski identified and exploited a third figure of light, the “lightcone,”
to define and illustrate the structure of spacetime. In the wake of spacetime theory,
other investigators used figures of light to explore the relation of simultaneity, the
properties of four-vectors, and the conformal structure of spacetime. The period of
study comes to a close with the publication of Ludwig Silberstein’s textbook on
relativity, which was the first to feature all three figures of light. Although light
figures sparked discussion and debate until the early 1920s, Silberstein’s discussion
represents a point of closure on this topic, by bringing together previously disjoint
intellectual developments of the previous decade.

By following light figures through a selection of published and archival sources
during the period 1905-1914, the skills and concerns of a nascent community of
relativists are brought into focus. The progress of this community’s knowledge of
the scope, history, and foundation of relativity theory, as it related to the domains
of measurement theory, kinematics, and group theory, is reflected in the ways it put
these new objects to use, by means of accounts both formal and discursive in nature.
During the formative years of relativity, an informal, international, and largely
independent group of physicists, mathematicians, and engineers, including Einstein,
Paul Langevin, Poincaré, Minkowski, Ebenezer Cunningham, Harry Bateman, Otto
Berg, Max Planck, Max von Laue, Arthur A. Robb, and Ludwig Silberstein,
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employed figures of light to discover salient features of the relativistic worldview.
Their contributions, and those of their critics, are considered here on their own
merits, as part of an intellectual movement taking place during a period when the
meaning of the theory of relativity was still negotiable, and still being negotiated.

1.2 Einstein’s Light Sphere

The concepts of relative time and relative simultaneity were taken up by Einstein
in the course of his relativity paper of 1905. It seems he was then unaware of
Lorentz’s (1904) attempt to demonstrate the form invariance of Maxwell’s equations
with respect to the Lorentz transformation. By 1904, the Lorentz transformation had
appeared in several journals and books (Darrigol 2000, 381). Einstein demonstrated
the covariance of Maxwell’s equations with respect to the Lorentz transformation,
but the requirement of covariance of Maxwell’s equations itself determines the
transformations only up to a global factor (assuming linearity). Consequently, in
order to derive the Lorentz transformation, imagination was required in order to set
this factor equal to unity.

To this end, Lorentz (1904) advanced arguments of a physical nature, which
failed to convince Henri Poincaré. If the transformation in question is to form
a group, Poincaré argued, the troublesome factor can be assigned no value other
than unity. Einstein took a different tack: for him, the determination of the global
factor resulted from neither physical nor group-theoretical considerations, but from
kinematic assumptions.2

He embarked upon what Martinez (2009, § 7) describes as a “tortuous” alge-
braic derivation of the Lorentz transformation from his kinematic assumptions,
which puzzled contemporary scientists and modern historians alike. The details
of Einstein’s derivation have been the subject of close attention and need not be
rehearsed here. Instead, I will focus on Einstein’s insertion of an argument for the
compatibility of his twin postulates of relativity and lightspeed invariance.’

The compatibility of Einstein’s postulates of relativity and lightspeed invariance
followed for Einstein from an argument which may be summarized (in slightly
updated notation) as follows. Let a spherical light wave be transmitted from the

20n the assumption of linearity, see Brown (2005, 26), and for the kinematic background to
Einstein’s first paper on relativity, see Martinez (2009). Einstein did not let kinematics decide
the matter once and for all in 1905. In a letter of September 1918 written to his friend, the anti-
relativist and political assassin Friedrich Adler, Einstein considered the global factor in the Lorentz
transformation to be of an empirical nature, whose value had been determined (to Einstein’s
satisfaction) by the results of certain electron-deflection experiments (Walter 2009, 213). Poincaré
expressed his views to Lorentz by letter in May 1905; see Walter et al. (2007, §§ 38.4, 38.5).

30n the compatibility argument, see Williamson (1977). Gaps in Einstein’s reasoning are apparent
from a modern standpoint; see, for example, Kennedy (2005).
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coordinate origin of two inertial frames designated S and S’ at time r = t = 0.
In system S the light wave spreads with velocity c¢ such that the wave front is
expressed as:

x2+y2+z2 =22 (1.1)

To obtain the equation of the wave front in frame S’ moving with velocity v with
respect to S, we apply a transformation of coordinates from S to S’, depending on
an as-yet-undetermined factor ¢, which is a function of v:

£ = o)y =), 1=y, L =p)z T=py (1= %), (12

where y = (1 — vz/cz)_%. Applying (1.2) to (1.1), Einstein found:
240+ 2= (1.3)

Since (1.1) goes over to (1.3) via the transformation (1.2), Einstein observed, the
light wave that is spherical in S is also spherical in S’, propagates with the same
velocity ¢, and consequently, “our two basic principles are mutually compatible”
(Einstein 1905, § 3, 901).

Einstein’s compatibility demonstration addressed one of the more immediate
objections to be raised against his theory: that the propagation of light implied
the existence of a substrate. This substrate, known as the ether, was common
to the electron theories of Lorentz, Larmor, Bucherer-Langevin, and Abraham.
Einstein’s axiomatic approach to the electrodynamics of moving bodies did not
destroy the conviction that a substrate was required for light propagation. On
the contrary, Einstein’s twin postulates of relativity and lightspeed invariance
rendered his theory all the more suspect. Arnold Sommerfeld, for example, was
impressed by FEinstein’s “genial” theory, but worried that something ‘“‘almost
unhealthy lies in this unconstruable and intuition-free dogma.”* For Tolman (1910,
28, n. 1), Einstein’s light postulate expressed “seemingly contradictory ideas”
of relativity and independence of propagation velocity of light from that of its
source.

Tolman’s concern over the compatibility of Einstein’s postulates stemmed in part
from the fact that the propagation velocity of light is an extraordinary velocity in
Einstein’s kinematics. While a spherical light wave is form-invariant for inertial
frames in Einstein’s scheme, the form of other physical objects is frame dependent.
A rigid sphere of matter with radius R at rest in frame S, for example, is judged
by an observer in motion along the x-axis to have the flattened form of an ellipsoid
of revolution with axes (y 'R, R, R). Light waves had a special role to play in
Einstein’s theory, being essentially different from other physical objects. As Einstein

4Sommerfeld to H.A. Lorentz, 26 Dec. 1907, in Kox (2008, § 165).
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put it, the speed of light in his theory “plays the role of an infinitely great speed,” and
it renders “senseless” the notion of hyperlight velocities (Einstein 1905, § 4, 903).

How did Einstein’s compatibility argument for his postulates of relativity and
constant lightspeed sit with his contemporaries? At least one of Einstein’s readers,
the Cambridge-trained mathematician Ebenezer Cunningham (1881-1977) was
intrigued by Einstein’s approach. A student of St. John’s College, where his director
of studies was the influential analytic geometer H.F. Baker, Cunningham was
Senior Wrangler in 1902.5 Cunningham lectured on mathematics in Liverpool from
1904 and was joined there in 1906 by another Senior Wrangler (1903), Harry
Bateman (1882-1946), who had studied at Trinity College. In 1907, Cunningham
left Liverpool to lecture on applied mathematics at University College London, and
in 1911, he returned to St. John’s as a Fellow and lecturer in mathematics.®

Among British theorists, relativity theory had few proponents, if any, when
Cunningham first took it up.” Cunningham naturally read Einstein in his own
fashion, drawing on the intellectual tools at his disposal. He understood Einstein’s
theory to be consistent with the existence of multiple ethers, provided that every
inertial frame is associated with an ether.® Inspired by Larmor’s electron theory,’
Cunningham’s multiple-ether view of relativity recalls the view of mechanics pro-
posed by the Leipzig mathematician Carl Neumann. Newton’s laws of mechanics,
Neumann observed, give one the freedom to consider any inertial frame to be at
rest with respect to a fixed set of coordinate axes he called the “Body Alpha.”!?
Neumann described the role assumed by the Body Alpha in the general theory
of motion to be similar to that of the luminiferous ether in the theory of optical
phenomena (Neumann 1870, 21). Views equivalent to Cunningham’s, but stripped
of reference to the ether, were subsequently advanced by Minkowski (1909, 79) and
Laue (1911a, 33). Cunningham’s view, based on multiple ethers, found employment
throughout the 1920s, thanks to Sommerfeld’s celebrated textbook Atombau und
Spektrallinien (Sommerfeld 1919, 319).

Cunningham’s first paper on relativity set out to overturn an objection raised
by Max Abraham with respect to Lorentz’s electron theory. Abraham (1905,
205) believed that energy conservation required a fundamental modification of
Lorentz’s deformable electron model, in the form of a supplemental internal,

SFor an assessment of Baker’s rise to prominence among Cambridge geometers, see Barrow-Green
and Gray (2006).

6See McCrea (1978), and John Heilbron’s interview with Cunningham (Heilbron 1963).

7 A proponent of Einstein’s theory is understood here to be an individual seeking either to support
or to extend any of the novel ideas contained in Einstein’s 1905 paper. On the British reception of
relativity, see Goldberg (1970), Sanchez-Ron (1987), and Warwick (2003).

8See Goldberg (1970), and Hunt (1986).

9Cunningham noted a personal communication with Larmor, to the effect that while a proof of
the Lorentz transformation’s validity for electron theory to second order of approximation in v/c
appeared in the latter’s £ther and Matter (Larmor 1900), Larmor had “known for some time that
[the Lorentz transformation] was exact” (Cunningham 1907, 539).

19Cunningham (1911) recalled this fact, without mentioning Neumann.
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non-electromagnetic source of energy. Cunningham challenged Abraham’s (frame-
dependent) definition of electromagnetic momentum and found that, under the same
quasistationary-motion approximation, and an alternative momentum definition, the
problem vanishes. He concluded that no non-electromagnetic energy was required
by Lorentz’s electron model, which remained for him a possible foundation for a
“purely electromagnetic theory of matter.”!!

Along the way, Cunningham assumed that if Lorentz’s deformable electron is
spherical when at rest, when put in motion and measured by comoving observers, it
will remain spherical. But when measured with respect to a frame at rest, the moving
electron will have a “spheroidal shape as suggested by Lorentz” (Cunningham 1907,
540). Cunningham took this suggestion a step further, arguing that a light wave
would appear spherical to all inertial observers, in agreement with Einstein on this
point (and with reference to Einstein’s relativity paper of 1905).

Next, Cunningham took an important step toward the legitimation of the
concept of light-sphere covariance, as Goldberg (1970, 114) first noticed. Einstein’s
demonstration of the Lorentz transformation could be reduced to a handful of steps,
Cunningham realized, by requiring the covariance of the light-sphere equation (1.3)
with respect to this transformation. Cunningham’s requirement of covariance of the
light-sphere equation entailed the relativity of space and time:

For it is required, among other things, to explain how a light-wave traveling outwards in
all directions with velocity C relative to an observer A, may at the same time be traveling
outwards in all directions with the same velocity relative to an observer B moving relative
to A with velocity v. This can clearly not be done without some transformation of the space
and time variables of the two observers. (Cunningham 1907, 544)

Cunningham went on to observe that Alfred Bucherer’s recent calculation of
electron mass (Bucherer 1907) was mistaken, because Bucherer did not “take into
account this necessary modification of coordinates.”'? Unconvinced by Cunning-
ham’s lesson, Bucherer (1908b) retorted quite rightly that light-sphere covariance
was not required for the explanation of “any known fact of observation.”!?

Bucherer’s complaint of inutility notwithstanding, Cunningham’s clever and eco-
nomical approach to deriving the Lorentz transformation represented a significant
advance over Einstein’s cumbersome approach via ideal rods and clocks, although
he did not realize at first just what he had accomplished. This much may be gathered
from his response to Bucherer’s complaint, published in March 1908:

" Cunningham’s conclusion agrees with that reached later by Fermi; see Rohrlich (2007, 17),
Janssen and Mecklenburg (2006).

12Cunningham (1907, 547). Both Cunningham and Planck failed to understand Bucherer’s theory,
which allowed for closed links between electrons; see Darrigol (2000, 371).

'3According to Balazs (1972), Bucherer’s remark shows that he was “confused about the basic
problem of relativity,” in that he failed to “realize the connection of this problem with the
Michelson-Morley experiment and its relation to the transformation laws.” Yet the Lorentz-
FitzGerald contraction explains on its own the null result of the Michelson-Morley experiment,
as Bucherer and contemporary theorists knew quite well.
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May I explain that I did not wish to assert that [light-sphere covariance] was required by any
known fact of observation, but that I took it to be involved in the statement of the principle.
I may have read more into it more than was intended, but if the Maxwell equations are
assumed to hold when referred, as occasion requires, to various frames of reference moving
relatively to one another, the deduction cannot be escaped that the velocity of propagation
of a spherical wave will be found to be exactly the same, whatever the frame of reference.

With Bucherer’s insistent prompting, Cunningham recognized not only that light-
speed invariance was a convention but that he had freely interpreted Einstein’s
theory.

A few months after Cunningham’s original paper appeared, Einstein employed
the latter’s method in an invited review of relativity theory, making Cunningham the
first British contributor to what was later known as Einstein’s theory of relativity.
Einstein did not acknowledge Cunningham’s proof, however, and he may well have
come up with it on his own.!4

Further contributions to relativity from Cunningham and Bateman, making novel
use of the light sphere, were still to come in 1908-1909. Before examining this
work (in Section 1.8), it will be useful to review first the light figures produced by
Poincaré and Minkowski, whose four-dimensional approach to relativity provided
the basis for the later papers of Cunningham and Bateman.

1.3 Poincaré and the Lorentz Group

Poincaré (1905b) was quick to grasp the idea that the principle of relativity could
be expressed mathematically by transformations that form a group. This fact
had several immediate consequences for Poincaré’s understanding of relativity.
Notably, following a method outlined by Lie and Scheffers (1893, 669), Poincaré
identified invariants of the Lorentz transformation directly from the fact that the
transformation is a rotation about the coordinate origin in four-dimensional space
(with one imaginary axis). Any transformation of the Lorentz group, he noted
further, may be decomposed into a dilation and a linear transformation leaving
invariant the quadratic form x> + y? + z> — 2, where light velocity is rationalized
to unity. Poincaré naturally associated this quadratic form with the propagation of
light and gravitational action (Poincaré 1906, §§ 4, 8).

Curiously for one who had engaged with the Riemann-Helmholtz-Lie problem
of space, Poincaré avoided drawing consequences for the foundations of geometry
from the “new mechanics” of the Lorentz group, with one exception. He observed
that while previously, measurement of length implied the physical displacement of
solids considered to be rigid,

14Gee Einstein (1907, § 3); reed. in Stachel et al. (1989, vol. 2, Doc. 47). Cunningham’s paper
appeared in the October 1907 issue of the Philosophical Magazine, and Einstein’s review article
was submitted for publication in Johannes Stark’s Jahrbuch der Radioaktivitit und Elektronik on
4 December 1907.
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... this is no longer true in the current theory, if we admit the Lorentzian contraction. In this
theory, two equal lengths, by definition, are two lengths spanned by light in the same lapse
of time. (Poincaré 1906, 132)

Light signals, in other words, were the new basis for both temporal and spatial
measurement. But how was one to go about measuring lengths in a frame in motion,
where measuring rods are Lorentz contracted?

Poincaré’s measurement problem called for a solution, and shortly, Poincaré
provided one. 15 1n lectures at the Sorbonne in 1906-1907, he interpreted the Lorentz
transformation with respect to a geometric figure representing the wave front of an
electromagnetic pulse, as judged by an observer at rest with respect to the ether. 1
will refer to Poincaré’s figure as a “light ellipsoid,” following Sommerfeld’s coinage,
and to a meridional section of this ellipsoid as a “light ellipse.”'® The light ellipse
is a staple of Poincaré’s kinematics of relativity, in that he illustrated his view with
this device on at least four occasions, with significant variations, during the final 6
years of his life, from 1906 to 12 July 1912. His light ellipse theory appeared three
times in print during Poincaré’s lifetime, in French journals of popular science, and
in a book of philosophy of science.!’

The origin of Poincaré’s light ellipse is uncertain, but his most likely source of
inspiration is a paper published by Paul Langevin in March 1905. Before discussing
the latter source, however, another possible source should be mentioned: Einstein’s
relativity paper. As noted above, Einstein clearly expressed the spherical form of a
light shell for inertial observers and used the invariance of this form under certain
coordinate transformations to show the compatibility of his postulates of relativity
and lightspeed invariance. Also, Einstein made an implicit distinction between an
abstract geometric surface and the realization of such a surface by wave fronts
as measured by inertial observers. This distinction underlies Einstein’s analysis
(Einstein 1905, § 8) of the energy content of a given “light complex” (Lichtkomplex)
as measured in two inertial frames. Einstein imagined light propagating spherically
in a frame S and examined the form of the surface obtained by setting to zero the
time ¢ in the transformed wave equation. The volume enclosed by the resulting
“ellipsoidal surface” (Ellipsoidfiiiche) measured in S’ is greater than that enclosed
by the corresponding “spherical surface” (Kugelficiche) measured in S, such that the
energy density is less in S’ than in S.

15 An alternative approach, advanced by Born (1909), involved redefining the notion of a rigid body
in Minkowski spacetime. On related developments, see Maltese and Orlando (1995).

16Sommerfeld insisted in his lectures on electrodynamics that a Lorentz transformation does not
change a “Lichtkugel” into a “Lichtellipsoid” (Sommerfeld 1948, 236).

17See the edition of Henri Vergne’s notes of Poincaré’s 1906-1907 lectures at the Paris Faculty of
Science (Poincaré 1953) and his 1912 lectures at the Ecole supérieure des postes et télégraphes
(Poincaré 1913), along with the two articles (Poincaré 1908a, 1909). The article of 1908 was
reedited by Poincaré in Science et méthode (Poincaré 1908b); the light ellipse is described on
p- 239, but the diagram was suppressed from this version, presumably by the editor, Gustave Le
Bon.
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Einstein’s focus in Section 8 of his paper was on the energy content of
volumes delimited by spherical and ellipsoidal surfaces. I disagree in this instance
with Arthur Miller’s gloss of Einstein’s argument, inasmuch as Miller identifies
Einstein’s equation for the ellipsoidal surface as an “ellipsoidal light pulse” (Miller
1981, 310). What Einstein wrote with respect to the equation in question was
the following: “Die Kugelfliche ist — in bewegten System betrachtet — eine
Ellipsoidfldache ...” (Einstein 1905, § 8). In other words, Einstein considered the
energy content of an ellipsoid, and not an ellipsoidal light pulse.

More than likely, some of Einstein’s contemporaries also misread Einstein’s
remarks on the Ellipsoidfiiiche in a moving frame and imagined an ellipsoidal
light shell in a moving frame. For example, in 1912, the French polymath Maurice
Lémeray (1860—-1926), a recognized expert on relativity theory and a former warship
designer, confidently attributed a light ellipse interpretation to Einstein, only to
retract his view shortly thereafter.'® While we cannot rule out the possibility that
Einstein’s Kugelfliiche inspired Poincaré’s light ellipse, there is a second source,
which is directly linked to Poincaré’s research on relativity: a paper by Paul
Langevin. In the next section, I present an argument in favor of Langevin’s influence
on Poincaré’s conception of the light ellipse.

1.4 Langevin’s Electron Wake

Paul Langevin (1872-1946) was a former student of Poincaré, whose 1896 lectures
at the Paris Faculty of Sciences on Sommerfeld’s theory of diffraction he followed. '
Langevin had also studied at the Cavendish Laboratory, and his novel theory of the
electron drew on several sources, especially Joseph Larmor’s £ther and Matter
(Larmor 1900), J. J. Thomson’s Notes on Recent Researches (Thomson 1893), and
George Searle’s calculation of the energy of a Heaviside ellipsoid (Searle 1897). He
introduced a distinction between the velocity fields and acceleration fields of the
electron and published a graphical depiction of the velocity waves of a spherical
electron in motion. This led in turn to a geometrical derivation of the field of a
Heaviside ellipsoid, introduced by Heaviside in 1889, and glossed by J. J. Thomson
in 1893 (op. cit.).

Langevin was concerned, as the title of his paper suggests, with the source of
electron radiation and the inertia of the electron. He supposed that electron radiation
was due entirely to acceleration. This stipulation allowed him to calculate the energy

18See Lémeray (1912), communicated to the Paris Academy of Sciences on 9 December 1912 and
the retraction (ibid., p. 1572). It is not clear whether Lémeray meant to attribute a flattened light
ellipsoid or an elongated light ellipsoid to Einstein. Several years later, the Swiss physicist Edouard
Guillaume (1921) referred to an “ellipsoide de Poincaré.” Guillaume corresponded with Einstein
on this topic; see Kormos Buchwald et al. (2006, Doc. 241).

19Gee Langevin’s notes of Poincaré’s lectures, Fonds Langevin, box 123, Bibliothéque de I'Ecole
supérieure de physique et de chimie industrielle, Paris.
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of an electron in uniform motion. The “electromagnetic mass” of such an electron
was given to be a function of the “sillage,” or wake of the electron in motion. The
wake was composed of “velocity waves” propagating, in Langevin’s picturesque
language, “like the waves emanating from the front of a ship” (Langevin 1905,
171). The electron’s electromagnetic mass thus depended on the postulated charge
distribution of the electron; Langevin considered both a uniform surface charge and
a uniform volume charge.

The distinction between velocity and acceleration waves made here by Langevin
recalls the retarded potentials introduced to electrodynamics by his former teacher
Poincaré (1891), following Lorenz (1867). It recalls as well the formulation of the
potentials for a moving point charge due to Liénard (1898) and Wiechert (1900).
Langevin’s theory, like Lorentz’s electron theory, assumed an ether at absolute rest.
According to Langevin, electrons traveled through the ether at velocities less than
that of light, generating velocity waves and, in the case of non-inertial motion,
acceleration waves. Both sorts of waves propagated in the ether with the speed of
light, while velocity waves dissipated rapidly, such that only acceleration waves
could be detected far from the electron.?”

1.5 Poincaré’s Light Ellipse

As a student in the mid-1890s, Langevin had followed Poincaré’s lectures on
Sommerfeld’s theory of diffraction, but he did not engage personally with Poincaré
until September 1904, when they were both members of the French delegation to the
Congress of Arts and Sciences, held at the World’s Fair in Saint Louis. The younger
man was flattered by the attention of his former teacher, as he recounted the meeting
by letter to his wife back in Paris.! By that time, the two men had a mutual interest
in the theory of electrons, which was the topic of Langevin’s lecture in Saint Louis
(Langevin 1906).

We do not know if Langevin ever discussed with Poincaré his forthcoming paper
on the inertia of the electron (Langevin 1905). However, we do know that Poincaré
found inspiration from the latter paper for his discovery of the Lorentz group, as
it is one of the few papers cited by Poincaré (along with Lorentz 1904). Under the
coordinate transformations of the Lorentz group, Poincaré demonstrated in 1905,
the laws of electrodynamics retain their form. What impressed Poincaré most was
not Langevin’s constant-volume model of the electron, but his explanation of the
velocity and acceleration waves produced by an electron, according to which these
waves propagate in free ether at the speed of light. Instead of Langevin’s model,
Poincaré preferred the deformable electron model proposed by Lorentz, which
had the advantage, as Poincaré proved, of preserving the principle of relativity.
Poincaré (1906, 149) noticed further that by applying the Lorentz transformations

20For details on Langevin’s paper, see Miller (1973).

21gee Langevin’s noteboqk, box 123, and letter to his wife of 26 September 1904, box 3, Fonds
Langevin, Library of the Ecole supérieure de physique et de chimie industrielle, Paris.
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to Langevin’s acceleration waves, he could recover Hertz’s solution of Maxwell’s
equations for an oscillator at rest in the absolute ether.??

In June, 1905, Poincaré supposed that all laws of physics were likewise form-
invariant with respect to the transformations of the Lorentz group, including the law
of gravitation. In a letter to Lorentz announcing his discovery, Poincaré observed
that the requirement of Lorentzian form invariance spelled the end of what he called
the “unity of time” (Poincaré to Lorentz, in Walter et al. 2016, 2-38-3). Yet Poincaré
was not ready to abandon the traditional definition of time and space in this new
theoretical context. He deftly elided the question of time and space deformation in
his memoir on the dynamics of the electron (Poincaré 1906) by focusing on active
transformations alone (Sternberg 1986).

Questions of relativity of space and time remained on Poincaré’s mind after 1905.
In his university lectures of 19061907, Poincaré explained how, in principle, one
could measure Langevin waves and thereby determine the shape of an electromag-
netic pulse generated by a source in motion with respect to the ether. According to
lecture notes by a student notetaker, Henri Vergne (1879-1943), Poincaré recalled
Langevin’s paper and reproduced (Figure 1.3) the latter’s illustration of the waves
produced by an electron in motion (Figure 1.1).2* He also produced a diagram of his
own creation (Figure 1.2), which showed how an electromagnetic pulse was related
to the Lorentz transformations. The pulse created by the point source had the form
of an ellipsoid, elongated in the direction of motion of the source, with a focus
colocated at the source. A section through a meridian of the ellipsoid produces the
ellipse shown in Figure 1.2.

Poincaré’s diagram illustrates the Lorentz contraction, whereby all material
objects contract by a Lorentz factor, but only in the direction of their motion

Fig. 1.1 Schematic diagram
of an electron moving
uniformly from left to right,
generating velocity waves.
Redrawn from Langevin
(1905).

220n Hertz’s solution, see Darrigol (2000, 251).
23Henri Vergne, notebook 2, Frangois Viete Center, University of Nantes.



14 S. A. Walter

Lorentz factor v = 1//1 — v2/c®

semimajor axis a = OA = et

semiminor axis b = OH = ct
eccentricity e = /1 — b%/a2 = v/c

focal distance OF = vt

apparent time t' = FM/c

apparent displacement z’ = FP

Fig. 1.2 The light ellipse, after Vergne’s notes (2, 50). Labels H and A are added for legibility,
and notation is modernized.

with respect to the ether. Commentators offer conflicting views of other aspects
of Poincaré’s ellipse, and as I will show later, Poincaré himself changed his view of
the ellipse around 1909.

Poincaré’s concrete model of the propagation of electromagnetic waves from a
source in uniform motion merits our attention for two reasons. His light ellipse
was, first of all, a graphical illustration of kinematic relations in relativity theory,
the first in a long line of such techniques designed to display the relations of
relativistic kinematics. Secondly, Poincaré’s theory of the light ellipse stands as the
first of many attempts by physicists to reconcile an assumed Lorentz covariance
of physical laws with Galilean kinematics. In particular, Poincaré’s interpretation
of the Lorentz transformation contrasts sharply with the views of Cunningham and
Einstein, outlined in previous sections.

The light ellipse is, at the same time, a curious historical object that has given
rise to variant readings. To some extent, the lack of consensus among historians is
to be expected: none of Poincaré’s four independent discussions of the light ellipse
clarifies fully his protocol for measuring the dimensions of the locus of light in a
moving frame. To help distinguish the various readings of Poincaré’s ellipse, let us
consider three propositions:

1. The principle of relativity is valid.

2. Measurements of the light shell are performed with concrete rods by observers
at relative rest with respect to rods and clocks, at an instant of apparent time t'
indicated by light-synchronized clocks.

3. Measurements of the light shell are performed with concrete rods in motion by
observers at relative rest with respect to the clocks, at an instant of absolute
timet.

Einsteinian relativity upholds (1) and (2) only, provided that we neglect the
distinction made in (2) between “apparent time” and “absolute time,” time and space
being frame-dependent quantities in Einstein’s view.

The first historically motivated account of Poincaré’s light ellipse, due to Cuvaj,
accepts (2), but rejects (1), in that comoving observers “will have contracted
measuring sticks, in their own frame S’ too, so that a wave-sphere (of radius
ct) will appear as an ellipsoid” (Cuvaj 1970, 74, original emphasis). Thus for
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Cuvaj, Poincaré’s protocol contradicts the principle of relativity, and in light of this
contradiction, it is “defective.”

An alternative reconstruction of Poincaré’s measurement protocol, advanced
by Wright (1975, 453) and Darrigol (1995, 41), accepts (1) and (3), such that
Poincaré’s light ellipse “represents the location of a light pulse at a given value
of the absolute time and for geometers belonging to a moving system” (Darrigol
1995, 41). Both Wright and Darrigol find Poincaré’s approach to be circuitous in
comparison to that of Einstein. For Darrigol, Poincaré’s employment of kinematic
attributes from different frames appeared “an absurdity from the Einsteinian point
of view” (Darrigol 1995, 41), although he later acknowledged that Einstein, too,
mixed his attributes on occasion (Darrigol 2015, note 67).

According to the reading suggested here, following Walter (2014), Poincaré
originally upheld (1) and (3), but later revised his view, discarding (3) in favor of
(2). Poincaré, like Einstein, considered light propagation in empty space to be the
only physical phenomenon not subject to Lorentz contraction. In his first popular
account of relativity theory, Poincaré (1907) drew a series of consequences for the
philosophy of phenomenal space, during which he invoked a thought experiment,
which proceeds as follows. Let all objects undergo the same expansion overnight;
in the morning, the unsuspecting physicist will not notice any change. Poincaré
likened the fantasy of an overnight spatial expansion to the relativity of moving
bodies in contemporary physics, in that Lorentz’s theory admitted the contraction of
bodies in their direction of motion with respect to the ether. Just as with the thought
experiment, Poincaré disallowed detection of the contraction, from the assumption
that instruments of measure exhibit compensating effects.”*

In the same vein, Poincaré admitted the principle of observational equivalence
among inertial observers. He retained, however, a semantic distinction between
true and apparent quantities, corresponding respectively to quantities measured
in a frame at absolute rest S and those measured in frames in uniform motion
with respect to the absolutely resting frame.>> His definition of temporal and
spatial intervals for observers in uniform motion with respect to the ether went as
follows: apparent time (or equivalently, local time) is the time indicated by light-
synchronized clocks at relative rest; local distance is measured by light time of flight,
such that a concrete rod at rest with apparent unit length in a direction parallel to
that of frame motion has true length y.

Consequently, in an inertial frame S’, concrete measuring rods of length ¢’
contract in their direction of motion with respect to the ether frame S according
to Lorentz’s formula, £ = y~1¢, where y~! = /1 — v2/c2, and £ designates the
length of the rod in a frame at rest S, v is the velocity of S’ with respect to S,

24Poincaré’s fantasy was extended by Tolman (1914) via dimensional analysis, in the form of a
“principle of similitude,” a view that attracted sharp criticism from Bridgman (1916).

25 The notion of an absolutely resting frame remained an abstraction for Poincaré. In 1912, he
upheld the conventionality of spacetime and expressed a preference for Galilei spacetime over
Minkowski spacetime (Walter 2009).



16 S. A. Walter

Fig. 1.3 A light source in
uniform motion, redrawn
from Vergne’s notebook (2,
50)

and c is the velocity of light, a universal constant. Observers in S’ can correct for
the motion-induced Lorentz contraction of their measuring rods; Poincaré put the
correction factor at 5 - 107226

In his Sorbonne lectures of 1906—1907 (mentioned above), Poincaré employed
the light ellipse in pursuit of two objectives. First, he wanted to show that length
and time measurements are transitive for inertial observers, transitivity being a sign
of objectivity. To do so, he imagined a light source in uniform motion of velocity v
that passes through the coordinate origin O at time #y = 0. At a later time #; > O,
the source reaches a point B = vtj, such that the light wave originating at time #
and propagating in all directions with speed c has a spherical wave front of radius
cty. Figure 1.3, redrawn after Vergne’s notes of Poincaré’s lectures, shows a section
of the surfaces of two light spheres associated with three successive positions of the
source: O, A, and B. The largest light sphere has center O, and the smallest has
center B, as judged by an observer at rest with respect to frame S with coordinate
origin O.

According to Vergne’s notes (2, 49), Poincaré described the “measured length”
of the light ellipse to be elongated in the direction of motion. I take this remark to
mean that measuring rods are Lorentz contracted, such that for the resting observer,
measured lengths are greater than “true” lengths by a Lorentz factor. Poincaré’s
published accounts of the light ellipse do not repeat this particular description of
its measured dimensions. Nonetheless, Vergne’s notes illustrate in detail Poincaré’s
measurement p1r0tocol.27

Referring to a unit circle with two segments extending from the center, as in
Figure 1.4, Vergne’s notes explain the measurement procedure for an observer
equipped with a ruler in motion:®

26See Poincaré (1901, 536), where the value is off by a factor of ten. In a later essay, Poincaré
(1904, 312) supplied the “correct” value of the correction factor « for terrestrial observers and an
ether at rest with respect to the Sun, where @ = (¢ — £/)/£ =1 — y~ L

2TThe published version of the notes differs markedly from the original, suggesting that their editor,
the astronomer Marguerite Chopinet, disagreed with their content; cf. Poincaré (1953, 219).
28«Alors je prends une surface rigoureusement spherique. Je la mesure avec mon métre: dans la
direction du mouvement mon metre sera contracté de «; sa longueur vraie sera devenue 1/«.
Donc mon diametre dans le sens du mouvement aura pour longueur mesurée «. Dans le sens
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Fig. 1.4 Poincaré’s

measurement scheme,
redrawn from Vergne’s 1
notebook (2, 49).

So I take a rigorously-spherical surface, and I measure it with my ruler. My ruler will
be contracted by « along the direction of motion; its true length will have become 1/c.
Therefore, along the bearing of motion my diameter will have the measured length «. Along
the perpendicular bearing the measured length will be 1. Therefore a sphere will appear [as]
an ellipsoid elongated along the bearing of motion. (Vergne notebook 2, 49-50, original
empbhasis)

Figure 1.4 shows a horizontal line segment labeled “«” extending from the circle
center just past the circumference and a vertical segment labeled “1,” extending
from the center of the circle to the circumference.

The dimensions of length measured by a comoving observer are in error due
to Lorentz contraction of rulers in motion, leading Poincaré to “correct” for the
contraction. Upon correction for the Lorentz contraction of rulers, Poincaré finds the
“true” shape of “rigorously spherical surface” to be that of an ellipsoid of revolution,
the major axis of which is aligned with the direction of motion of the observer and
ruler with respect to the ether.

This measurement scheme is novel, but Poincaré went on to identify his
“elongated ellipsoid” with the wave fronts of a light pulse, or what we call, for
convenience, a light ellipsoid. The exact dimensions of the light ellipsoid depend
on the time at which the measurement of the light locus is performed. However, the
form of the light ellipsoid is the same for comoving observers, in that the eccentricity
e is a constant that depends on frame velocity v alone, ¢ = v/c (cf. Poincaré
1908a, 393). Poincaré remarked that in a direction orthogonal to the observer’s
motion, there is no motion-induced length deformation, such that the length b of
the semiminor axis is b = ct, where t denotes “true” time, i.e., the coordinate time
t; of the ether frame S. This remark led Poincaré to argue that apparent temporal
duration is transitive for inertial frames and, ultimately, to a derivation of the Lorentz
transformation.

The derivation of the light ellipse that Poincaré performed for his students
proceeded as follows, based on the ellipse dimensions shown in Figure 1.2. From
the diagram, Poincaré read off the standard relation for an ellipse with focus F:

FM + FPe =a(l — é%), (1.4)

perpendiculaire la longueur mesurée sera 1. Donc une sphere paraitra un ellipsoide allongé dans le
sens du mouvement.”
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and then solved for ¢':
=y lr—wx'/c% (1.5)

The latter equation shows the apparent time ¢’ to be a linear function of apparent
displacement x’, as desired.?’ Although Poincaré did not point this out, by simply
rearranging (1.5), we obtain the transformation

t =y +vx'/c?), (1.6)
and upon substitution for x’, we get ¢’ in terms of x:
f =yt —vx/c). (1.7)

What Poincaré did point out explicitly to his students (Vergne notebook 2, 51) was
just this: since the difference between apparent and true time is a linear function of
apparent displacement, the variable ¢’ that appears in the Lorentz transformation is
the apparent time featured in the light ellipse.

In summary, Poincaré associated during his lectures of 1906—-1907 a light sphere
in S of radius c¢r with a light ellipsoid in S’ of semiminor axis length ct, and
semimajor axis length yct, from the dimensions of which he derived the Lorentz
transformation. Although he did not realize it, Poincaré’s interpretation of the
light ellipse was physically flawed, in that it ascribed to observers physical events
that have no causal connection to them. The flaw can be grasped most easily by
referring to a cognitive tool that was not available to Poincaré until 1908: the three-
dimensional Minkowski spacetime diagram (Walter 2014).

According to the interpretation of the Lorentz group offered in Vergne’s notes,
the radius vector of the light ellipse corresponds to light points at an instant of ether
time ¢. On a Minkowski diagram, the situation is described by an ellipse lying on
a spacelike plane of constant time 7 (Figure 1.5, with the t’-axis suppressed for
clarity). The ellipse center coincides with spacetime point B = (vt, 0, t), and the
points E, B, F, and A lie on the major axis, such that BH is a semiminor axis of
length ct. The light ellipse intersects the lightcone in two points, corresponding to
the endpoints of the minor axis, H and 1.

In the foregoing Minkowskian representation of the light ellipse, it is plain to
see that there are points on the light ellipse that lie outside the lightcone. The
latter points represent locations in spacetime physically inaccessible to all inertial
observers sharing a spacetime origin. In four-dimensional Minkowski spacetime,

2 Using the relations specified in Figure 1.2, we have
al—e®) =a(l — 1 —0b*/d®) =a(l = (1 = *t*/d?) = ac*t?Ja* = ct/y.

Rearranging the latter expression in terms of ¢, we find t = ay (1 — ¢2)/c, and substituting the
value of a(1 — e?) from (1.4), we obtain Poincaré’s expression (1.5) for apparent time #'.
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Fig. 1.5 Spacetime model of Poincaré’s light ellipse (1906) in a spatial plane (t =const.).

the intersection of the light sphere with center E and the light ellipsoid with
center B, where E and B lie on a spacelike plane, is a circle of radius ct. On
a three-dimensional Minkowski spacetime diagram, where one spatial dimension
is suppressed, the corresponding circle with center £ and ellipse with center B
intersect in two points, labeled H and I, such that EH = EI = BH = BI = ct.
The upshot is that Poincaré’s light ellipse model of the Lorentz group admits
superluminal signals. This is certainly not what Poincaré wanted, and it may be
assumed that he was not aware of the flaw in his model.

Poincaré published a popular presentation of the light ellipse in an article
entitled “The dynamics of the electron” that appeared on 30 May 1908. This article
recapitulates the presentation of the light ellipse found in Vergne’s notebook, and
introduces a discussion of relative velocity, in which Poincaré affirms that we
“must evaluate it in local time” (Poincaré 1908a, 397). While he did not explain
how such an evaluation would be performed, the problem of time measurement in
inertial frames was clearly posed by Poincaré. Other theorists, including Einstein
and Minkowski, had posed the same question, but unlike Poincaré, they admitted
that clocks in common uniform motion, synchronized by crossed light signals, are
valid timekeepers.

Like Einstein and Minkowski, Poincaré came to admit that clocks in uniform
motion are just as valid as clocks at rest in the absolute ether. The occasion for
this step was the sixth and final lecture delivered by Poincaré in Géttingen at the
invitation of the Wolfskehl Foundation, on 28 April 1909. Entitled “La mécanique
nouvelle,” the lecture was the only one presented in French, as if to underline the
Gallic origins of relativity theory for an audience more familiar with the theories of
Einstein and Minkowski.>*

30The context of Poincaré’s invitation to Gottingen is discussed in Walter (2018).
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For his Gottingen audience, Poincaré imagined an observer in motion equipped
with light-synchronized clocks and a radio transmitter-receiver.>! By exchanging
telemetry data with a second observer in relative motion likewise equipped, the
first observer comes to the conclusion that his watch is running fast. This situation
corresponds to the one invoked by Poincaré in 1908, as mentioned above.>?

By allowing clocks to read local time, Poincaré was able to repair the flaw in his
interpretation of the light ellipse. A few months after his lectures in Gottingen, he
delivered a plenary lecture at the annual meeting of the French Association of Arts
and Sciences, in Lille, on the third of August 1909. In the course of the lecture, he
recalled the thought experiment from his talk in Gottingen, and noted this time that,
for the two observers A and B in relative motion,3>

...a very elementary geometrical theorem shows that the apparent time required for light
to travel from A to B, i.e., the difference between the local time at A when the wave leaves
A and the local time at B when the wave reaches B, this apparent time, I say, is the same
as if the translational motion did not exist, just as required by the principle of relativity.
(Poincaré 1909, 173—174, original emphasis)

The “elementary geometrical theorem” referred to by Poincaré is just (1.4). By
employing apparent time instead of ether time, Poincaré transformed in one fell
swoop his light ellipse from a flawed interpretation of the Lorentz group to a model
of time dilation and Lorentz contraction.

Poincaré’s employment of apparent time ¢’ instead of ether time ¢, first commu-
nicated during his lecture in Lille, alters the representation of the light ellipse in
a 3D-Minkowski diagram (Figure 1.6), such that the ellipse lies in a spatial plane
of constant #’. The intersection of a constant-time plane ¢ = #; with the lightcone
(where c = 1), XX+ y2 — ¢%1? = 0 is a circle of center E and radius ct; in frame S,
while the intersection of the lightcone with a constant-time hyperplane in S’ passing
through spacetime point B forms an ellipse on a spacetime diagram, corresponding
to a circle of center B with respect to S’. Poincaré’s light ellipse (Figure 1.2) is
identical to the intersection of the lightcone with a spacelike plane in S’ passing
through spacetime point B on the t’-axis. The flaw of his previous interpretation

310n Poincaré’s engagement with electrotechnology, and wireless telegraphy in particular, see
Galison (2003), Gray (2013), and Walter (2017).

320ne may wonder why the watch in Poincaré’s thought experiment runs fast, and not slow, as
would be required by time dilation in an Einsteinian or Minkowskian context. An explanation is at
hand, if we focus on the first observer’s experience. At first, he believes he has a certain velocity,
say 200 km/s. An exchange of telemetry data with the second observer convinces him that he is
moving slower than he thought previously. One way for him to account for this revision is to admit
that his watch is running fast. Other explanations for the fast watch can be imagined; see Walter
(2014).

33« un théoréme de géométrie trés simple montre que le temps apparent que la lumigre mettra a

aller de A en B, c’est-a-dire la différence entre le temps local en A au moment du départ de A, et
le temps local en B au moment de I’arrivée en B, que ce temps apparent, dis-je, est le méme que
si la translation n’existait pas, ce qui est bien conforme au principe de relativité.”
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Fig. 1.6 Spacetime model of Poincaré’s light ellipse (1909) in a spatial plane (+' =const.).

of the light ellipse (in Figure 1.5), i.e., the existence of hyperlight signals, is no
longer present in the Lille interpretation, since all points of the light ellipse lie on
the lightcone.

The light ellipse was not a matter of discussion for theorists during Poincaré’s
lifetime, and it was rarely discussed after 1912, even though Lorentz adopted
the notion of a light ellipsoid in The Theory of Electrons (Lorentz 1909, 224).
The neglect of Poincaré’s light ellipse may be attributed in part to its obscure
presentation in the Revue générale des sciences pures et appliqués (Poincaré
1908a), which was the only detailed presentation of the light ellipse to appear until
1913.3* Beyond this particular case, both in France as elsewhere in Western Europe,
alternatives to the Einstein-Minkowski theory were often debated, while Poincaré’s
theory was considered by almost no one but Poincaré.>

Among electron theorists, Lorentz followed Poincaré’s work more closely than
others, and he applauded Poincaré’s contributions, some of which he adopted,
including Poincaré stress (Lorentz 1909, 213). If Lorentz was aware of Poincaré’s
light ellipse, he left no trace of it, while he reproduced Einstein’s light-sphere
derivation of the Lorentz transformations in the second edition of his Theory of
Electrons (Lorentz 1916, 322). Lorentz did not identify the source of the derivation,
which suggests that by 1916, it had lost all novelty.3

Later investigators, beginning with one of Einstein’s early collaborators, Guil-
laume (1922), invoked Poincaré’s light ellipse in a quest to save the notion

3An excerpt of the Revue article was included in Poincaré’s Science et méthode (Poincaré 1908b),
neglecting mathematical details, such as Poincaré’s discussion of relative velocity.

35For a sketch of the French reception of relativity, see Walter (2011).

36Despite Lorentz’s embrace of what Louis du Pasquier called the “principle of light-wave

sphericity,” the Swiss mathematician later wrote that Lorentz rejected this principle (Du Pasquier
1922, 68).
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of absolute time. Guillaume’s view informed the philosopher Henri Bergson’s
interpretation of special relativity in terms of “figures de lumiere” (Bergson 1922,
133). These contributions and others are neglected here as they fall outside our
temporal scope.’’

If Poincaré’s geometric point of view is adopted, his light ellipse shows how
to construe the Lorentz transformation as a rotation coupled to a dilation.’® Given
Poincaré’s skill in conceiving intuitive models of curved space,>® and in light of the
fact that he interpreted the Lorentz transformation algebraically as a pure rotation in
four-dimensional (3+1) space, one wonders if he considered illustrating the Lorentz
transformation as a pure rotation. The latter question arises in this historical context,
since Minkowski produced such an illustration just a year or so after Poincaré
introduced the light ellipse. Minkowski’s theory of spacetime and its relation to
the light sphere and the light ellipse are taken up in the next section.

1.6 Minkowski’s Lightcone

Hermann Minkowski was the first mathematician in Germany to take an interest
in relativity theory. His fellow mathematicians had long abandoned research in
theoretical physics, which in Germany had become the affair of specialists like Max
Planck and Ludwig Boltzmann, at least since the founding of physical institutes
in the 1870s (Jungnickel and McCormmach 1986). But like many in mathematics,
Minkowski kept abreast of research in analytical mechanics, a subject on which he
lectured at Ziirich Polytechnic (now the ETH), where Walter Ritz, Albert Einstein,
and Marcel Grossmann were among his students. From 1902, he taught this subject
and others at the Georgia Augusta University of Géttingen.*”

In Gottingen, Minkowski rejoined his friend David Hilbert and immersed himself
in the activities of the local research community. The first decade of the twentieth
century was a golden one for science in Gottingen, thanks in part to Felix Klein’s
success in attracting investments in new scientific and technical institutes from local
industry and government sources and to the drawing power of the faculty. Students
from Europe, Russia, the United States, and Japan came to Gottingen to hear lectures
by Hilbert, Minkowski, Klein, Walther Nernst, Eduard Riecke, Woldemar Voigt,
Karl Schwarzschild, Emil Wiechert, Ludwig Prandtl, and Carl Runge.41

370n Guillaume’s collaboration with Einstein, see Einstein’s letter to Jacob Laub, 20 March 1909,
in Klein et al. (1993, Doc. 143).

38 A displacement from one point to another on the light ellipse corresponds to a Lorentz
transformation in this interpretation. The radii from a focus to any two points of the ellipse are
related by a rotation and, in general, a dilation or a contraction.

390n Poincaré’s models of hyperbolic geometry, see Gray (1989) and Zahar (1997).
40For background, see Walter (1999a, 2008).
410n the rise of Gottingen as a scientific center, see Manegold (1970) and Rowe (1989).
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Electron theory served as a focus of many theoretical and experimental investi-
gations undertaken by Minkowski’s colleagues, although Voigt, Géttingen’s chair of
theoretical physics, had assumed a more critical stance. And while neither Hilbert
nor Minkowski had published on questions of physics, they were keenly interested
in exploring the mathematical side of electron theory, and in the summer semester
of 1905, they co-directed a seminar on the subject, attended by Wiechert, the
mathematician Gustav Herglotz, Born, Laue, and others (Pyenson 1979). Electron-
theoretical papers by Lorentz and Poincaré figured prominently on the seminar
syllabus, but their most recent publications, in which the principle of relativity
and the Lorentz transformation were exploited more fully, were neglected. As for
Einstein’s relativity paper, it had yet to be published.

Following the electron-theory seminar, Minkowski delved into another topic of
great interest to theoretical physicists: the theory of heat radiation. He lectured
on recent work in this area by Planck and Nernst for the Gottingen Mathematical
Society in 1906 and offered a course on the subject in the summer semester of 1907.
Minkowski’s course notes indicate that he was familiar with Planck’s pioneering
article on relativistic thermodynamics (Planck 1907), in which he praised Einstein’s
relativity paper. Shortly thereafter, Minkowski wrote to Einstein to request an
offprint of this paper, for use in his seminar.

Einstein’s achievement came to Minkowski as a “huge surprise,” according to
Max Born, because Minkowski did not believe Einstein possessed the mathematical
background necessary to create such a theory (Seelig 1960, 45; Born 1959, 502).
From the vantage point of its mathematical expression, Einstein’s electrodynamics
of moving bodies is all the more remarkable for its extreme simplicity. A lack of
training in advanced mathematics did not constitute a serious handicap for Einstein
in theoretical physics, as Hilbert and others pointed out later.*> In this respect,
Einstein’s electrodynamics of moving bodies contrasts sharply with Minkowski’s
memoir on the electrodynamics of moving media (Minkowski 1908), the elegant
formalism of which Einstein and other physicists chose at first to ignore.

The full exploitation of light-sphere covariance required a mathematical sophis-
tication somewhat beyond Einstein’s reach in 1905. Mathematicians like Poincaré,
Cunningham, and Minkowski were all in a position to explore the consequences of
light-sphere covariance in their formal investigations of the principle of relativity,
and all of them did so. It is far from clear, however, that Minkowski grasped the
essentials of Einstein’s kinematics, of which he gave a frankly distorted account in
his essay “Space and Time” (Walter 1999a). As mentioned above, Einstein provided
no geometrical interpretation of his kinematics or of the Lorentz transformation.
In his essay, Minkowski famously illustrated his spacetime theory with geometric
diagrams, and in an effort to distinguish his theory from those of Lorentz and

42See Frank (1947, 206). Miller (1976, 918) emphasizes the relative simplicity of the mathematical
tools deployed by Einstein in his relativity paper, in comparison to those Poincaré brought to
bear on similar problems. Renn (2007, 69) observes that Einstein’s uncanny aptitude for informal
analysis of complex problems served him well in both special and general relativity.
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Einstein, he interpreted the latter theories geometrically. Geometric reasoning
carried a significant part of Minkowski’s message in this work, as well as in
Minkowski’s earlier writings on relativity.*3

In one of his first attempts to provide a geometric view of the Lorentz transfor-
mation, Minkowski drew on Poincaré’s observation that the Lorentz transformation
corresponds to a pure rotation in four-dimensional space (x, y, z, ct+/—1). During
the course of a posthumously published lecture for the Gottingen Mathematical
Society on 5 November 1907, Minkowski brought up the quadratic expression
x2 4+ y2 + 72 — ¢%¢2, which he expressed in the Euclidean form x12 + x% + x% + xf,
via the substitution of x1, x2, x3, x4, for the coordinates x, y, z, ict (Minkowski
1915, 374). With this substitution, a re-expression of the laws of physics in four-
dimensional terms was at hand, the premises of which Minkowski laid out in his
lecture. First, however, he explored the geometry of his four-dimensional space,
noting an application of hyperbolic geometry.** He described the hypersurface

l‘2

—x2=y2—=1 (1.8)
as a calibration curve of sorts, in that any line from the origin to a point on
this hypersurface may be identified with the temporal axis of an inertial frame of
reference. The hypersurface of equation (1.8) may also be expressed, Minkowski
observed, in the form of a pseudo-hypersphere of unit imaginary radius

wi w3 +wi +wl=—1 (1.9)

Both hypersurfaces (1.8) and (1.9) were known to provide a basis for models of
non-Euclidean geometry (Figure 1.7).

The hypersurface (1.8) thus corresponds to the set of four-velocity vectors.
Although Minkowski did not spell out the interpretation, he probably recognized
that a displacement along (1.8) corresponds to a rotation Y about the origin, such
that frame velocity v is described by a hyperbolic function, v = tanh vr. However,
he probably did not yet realize that his hypersurfaces represent the set of events
occurring at coordinate time ' = 1 of inertial observers, the worldlines of which
pass through the origin. According to (1.8), this time is imaginary, which may have

Fig. 1.7 A reconstruction of
Minkowski’s 5

November 1907 presentation
of relativistic velocity space,
with a pair of temporal axes, ¢
and 1.

43Minkowski’s visually intuitive approach to relativity is explored at length by Galison (1979).
440n Minkowski’s use of hyperbolic geometry in this lecture, see Reynolds (1993).
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obscured the latter interpretation. In fact, Minkowski did not yet possess the notion
of a worldline or of proper time (Walter 2007, 217).

Sometime before the end of 1907, Minkowski discovered both worldlines and
proper time, along with the lightcone structure of spacetime; he published these
insights in an appendix to his theory of the electrodynamics of moving media,
on 5 April 1908. The Lorentz transformation, he realized, could be written in
trigonometric form, by invoking circular functions with an imaginary argument iy:

X|=x1, Xp=2xp, X3=x3C081 +x4siniyy, x5 = —x3siniy + x4cosiy,
where x4 = it, and ¢ = 1. Frame velocity v is then expressed in terms of a
tangent, v = —itaniy. In this imaginary-angle form, the two-dimensional Lorentz

transformation may be interpreted as a pure rotation about the center of a circle
of imaginary unit radius. Minkowski’s followers showed that in the real form, the
Lorentz transformation may be construed as a displacement along a unit hyperbola.
This unit hyperbola and the circle of imaginary unit radius correspond to the surfaces
(1.8) and (1.9), with two spatial dimensions suppressed.

In Minkowski spacetime, Einstein’s light-sphere covariance gives way to light-
cone covariance. Minkowski interpreted Einstein’s expression (1.1) for a light
sphere as the equation of a lightcone in spacetime. Whereas both Einstein and
Poincaré understood light waves in empty space to be the only physical objects
immune to Lorentz contraction, Minkowski saw that when light rays are considered
as worldlines, they divide spacetime into three regions, corresponding to the
spacetime region inside a future-directed (¢t > 0) hypercone (“Nachkegel”), the
region inside a past-directed (¢t < 0) hypercone (“Vorkegel”), and the region outside
any such hypercone pair. The propagation in space and time of a spherical light wave
is described by a hypercone, or what Minkowski called a lightcone (“Lichtkegel”).

One immediate consequence for Minkowski of the lightcone structure of space-
time concerned the relativity of simultaneity. In a section of his paper on the
electrodynamics of moving media entitled “The concept of time,” Minkowski (1908,
§ 6) showed that Einstein’s relativity of simultaneity is not absolute. While the
relativity of simultaneity is indeed valid for two or three simultaneous “events”
(Ereignisse), the simultaneity of four events is absolute, so long as the four
spacetime points do not lie on the same spatial plane.*> Minkowski’s demonstration
relied on the Einstein simultaneity convention, and employed both light signals and
spacetime geometry, but not the light sphere. His result showed the advantage of
employing his spacetime geometry in physics, and later writers, including Poincaré,
appear to have agreed with him, by considering the discovery of the existence of a

4“Werden jedoch vier Raumpunkte, die nicht in einer Ebene liegen, zu einer und derselben Zeit
to aufgefafit, so ist es nicht mehr moglich, durch eine Lorentz-Transformation eine Abénderung
des Zeitparameters vorzunehmen, ohne dafl der Charakter der Gleichzeitigkeit dieser vier Raum-
Zeitpunkt verloren” (Minkowski 1908, 69).
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class of events for a given observer that can be the cause of no other events for the
same observer as a consequence of spacetime geometry (Walter 2009, 210).

Physicists in Germany quickly seized upon Minkowski’s electrodynamics of
moving media, but as mentioned above, they stripped it of the four-dimensional
formalism in which it had been dressed by its inventor. In what became the standard
response to Minkowski’s electrodynamics of moving media, both in Germany and
abroad, Minkowski’s former students Einstein and Jacob Laub recast Minkowski’s
four-dimensional expressions in terms of ordinary vectors. In 1908, outside of
Gottingen and Cambridge, theorists saw no use at all for a four-dimensional
approach to physics.

One imagines that for Minkowski, this was a vexatious state of affairs. According
to his former student Max Born, Minkowski always aspired

to find the form for the presentation of his thoughts that corresponded best to the subject
matter. (Born 1914)

The form Minkowski gave to his theory of moving media had just been judged
unwieldy by his readers, and in the circumstances, decisive action was called for
if his formalism was to survive at all. In September 1908, he took such action, by
affirming the reality of the four-dimensional “world” and its necessity for physics
(Walter 2010). His celebrated lecture “Raum und Zeit,” delivered at the annual
meeting of the German Association of Scientists and Physicians in Cologne, offered
two diagrammatic readings of the Lorentz transformation, one attributed to Lorentz
and Einstein, the other to himself.

The first of these two readings was supposed to represent the kinematics of the
theory of relativity of Lorentz and Einstein. In fact, Minkowski’s reading captured
Lorentzian kinematics, but distorted Einsteinian kinematics, prompting corrective
action from Philipp Frank, Guido Castelnuovo, and Max Born.*® The idea stressed
by Minkowski was that in the (Galilean) kinematics employed in Lorentz’s electron
theory, time being absolute, the temporal axis on a space-time diagram may be
rotated freely about the coordinate origin in the upper half-plane (+ > 0), as shown in
Figure 1.8. The spatial position of a point P may be described with respect to frames

Fig. 1.8 A reconstruction of t i
Minkowski’s depiction of the '
kinematics of Lorentz and
Einstein, after Born (1920).

e

46See Born (1909, 9; 1959, 503). For further references and details on Minkowski’s distortion and
its reception, see Walter (1999a).
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S and §’, corresponding to the coordinate axes (x,7) and (x',t’), respectively,
according to the coordinate transformation: x’ = x — vz, t' = t.

In contradistinction to the latter view, the theory proposed by Minkowski
required a certain symmetry between the spatial and temporal axes. This constraint
on symmetry itself was sufficient for a geometric derivation of the Lorentz transfor-
mation. Although Minkowski described his spacetime diagram as an illustration of
the Lorentz transformation, he did not spell out the interpretation in detail. Nonethe-
less, Minkowski did provide a geometric derivation of the Lorentz transformation at
some point, as attested by an autograph slide in Minkowski’s Nachlass, which may
have been projected during the lecture he delivered to the German Association of
Scientists and Physicians in Cologne.*’

While Minkowski acknowledged Einstein’s critique of absolute time, he con-
sidered that the concept of a rigid body — upon which Einstein had based his
relativistic kinematics — made no sense in relativity theory (Minkowski 1909, 80).
Similarly, Poincaré deemed that measurement in relativity theory could no longer
rely on the displacement of rigid bodies, which were replaced for the purpose of
measurement in Lorentz’s theory by light time of flight (Section 1.3). For Poincaré
and Minkowski, Einstein’s foundation of relativistic kinematics on the behavior of
ideal clocks and rigid rods did not sit well at all with the Lorentz deformation of
displaced solids. They did not appeal to the kinematics of rigid bodies to derive
the Lorentz transformation, but affirmed the principle of relativity, and required
that the transformations of coordinates between inertial frames form a group.*®
For Minkowski, Lorentz contraction of electrons was a direct consequence of the
geometry pertaining to this group (Figure 1.9).

The latter consequences were displayed by Minkowski on a spacetime diagram
and elaborated upon by Sommerfeld on the occasion of a reedition of Minkowski’s
Cologne lecture (Sommerfeld 1913). Minkowski’s spacetime diagram thus offered
a novel means of understanding the strange consequences of Einstein’s kinematic
assumptions. However, the spacetime diagram was understood by some physicists to
lend support to an ether-based outlook, as shown by Emil Wiechert’s contributions
(discussed in Section 1.9).

4TNSUB Handschriftenabteilung. The demonstration missing from the published text of
Minkowski’s lecture was later supplied by Arnold Sommerfeld, in an editorial note to his friend’s
lecture. The annotated version of the lecture appeared in an anthology of papers on the theory
of relativity edited by Blumenthal (1913). According to Rowe (2009, 37), Sommerfeld was the
driving force behind the latter anthology.

48 As seen above, Poincaré also derived the Lorentz transformation from the assumption of Lorentz
contraction of concrete rods, and the isotropy of light propagation for inertial observers. He later
considered (apparent) time deformation as a consequence of the principle of relativity and Lorentz
contraction; see (Poincaré 1913, 44).
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Fig. 1.9 An autograph, hand-colored transparency of Minkowski’s geometric derivation of the
Lorentz transformation, probably from the Cologne lecture of 21 September 1908. Courtesy of the
Niederséchsichen Staats- und Universitétsbibliothek, Handschriftenabteilung.

1.7 Alfred A. Robb: Repurposing the Lightcone

A physicist trained in Belfast, Cambridge, and Gottingen, Alfred A. Robb (1873—
1936), found the means in Minkowski’s spacetime geometry to realize an “optical
geometry of motion,” in which he could dispense with Einstein’s ideal clocks
and rigid rods (Robb 1911). Robb, described by Larmor (1938, 320) as an
“unremarkable” graduate of St. John’s College, Cambridge, was ranked fifty-second
(ex aequo) in the 1897 Mathematical Tripos.*” He went on to write a theoretical
study of the Zeeman effect in Gottingen under W. Voigt’s direction, published in the
Annalen der Physik (Robb 1904), after which he returned to St. John’s, and joined
the Cambridge Philosophical Society.>?

In his doctoral thesis, Robb took up one of the more puzzling problems facing
physicists in the early twentieth century: to explain the patterns of magnetic
splitting of atomic spectral lines, known then as the complex Zeeman effect.
Starting from Lorentz’s Nobel Prize-winning theory of doublet and triplet lines
(Lorentz 1897), Robb introduced elastic forces between electron pairs, triplets,
and quadruplets. To obtain agreement with observation, he introduced a geometric
constraint, requiring electrons to oscillate on the surface of a cone. As he wrote

“Tanner (1917, 571). I thank J. Barrow-Green for pointing me to this source.

S0Robb was admitted to the Society on 27 Nov. 1905 (Proceedings of the Cambridge Philosophical
Society 16, 1912, p. 16).
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to Larmor, the “restrictions are so peculiar that one may be inclined to doubt the
theory,” and indeed, Robb’s scheme was later described by Lorentz as both “very
ingenious” and “so artificial !

Much like his theory of the complex Zeeman effect, Robb’s optical geometry
was both ingenious and unattractive to physicists. Yet Robb’s geometry laid the
groundwork for a theory of time and space that was later hailed by the likes of Weyl
(1922, 209). To build his optical geometry, Robb borrowed some basic insights
from Minkowski and transformed them as needed. For example, he employed
Minkowski’s trigonometric definition of velocity v, in a real hyperbolic form, such
that v = tanh w, and called  the “rapidity” of the particle.’”> Taking a cue from the
Minkowski spacetime diagram, Robb described particle velocity with respect to the
index axis z via the relation tan y = tanh w and expressed the lightcone in terms of
orthogonal axes xyz:

x24y? -2 =0, (1.10)

where the z-axis represents a temporal index, the vertex coincides with the origin,
and the speed of light is unity.

For purposes of illustration, Robb followed Minkowski’s convention on units,
such that the path of light in vacuum is described for any inertial observer by a line
forming an angle of 45° with the z-axis. In the place of Einstein’s notion of distant
simultaneity, Robb introduced a more restrictive definition, whereby the emission or
reception of two or more light signals is simultaneous if and only if it is observed at
a single spatial location at a single instant of time by a colocated, inertial observer.
Simultaneity is an absolute notion in Robb’s scheme, and the distance to a particle
of matter in arbitrary motion is determined by round-trip light time of flight between
the inertial observer and the particle.

Light rays play a fundamental role in Robb’s geometry of phenomenal space,
as the title of his booklet suggests. Issues of clock synchronization do not arise
here, nor is there any question of transforming measured quantities. However,
Robb was careful to show that according to his theory, lengths of material bodies
“appear to be shortened in the direction of motion,” a result in agreement with other
relativity theories.>? Moreover, to demonstrate this result, Robb implicitly borrowed

SIRobb to Larmor, 6 March 1904, Larmor Papers, St. John’s College Library; Lorentz (1909, 115).
Voigt sent Lorentz a copy of Robb’s dissertation; see Lorentz to Voigt, 18 Dec. 1904, in Kox (2008,
§ 121).

521n a letter to Larmor of 18 Jan. 1911, the Cambridge mathematician A. E. H. Love wrote that
he had “noted explicitly in writing” to Robb that one of his formulas was from Lobachevski
geometry, and that “space might be saved by bringing this fact in” (Larmor Papers, St. John’s
College Library). On Robb’s use of hyperbolic geometry, see Walter (1999b).

53For Robb the “appearance” of contraction was a necessary consequence of light time-of-flight
measurements. Robb, Einstein, and their contemporaries focused on the instantaneous form of
moving objects, in an approach distinct from the one adopted in the late 1950s. The latter studies
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Poincaré’s idea of using a light shell as a metric surface. Yet Robb openly distanced
himself from Poincaré’s conventionalist philosophy of geometry:

Speaking of the different “Geometries” which have been devised, Poincaré has gone so
far as to say that : “one Geometry cannot be more true than another; it can only be more
convenient.” [..] In reply to this; it must be remembered that the language of Geometry has
a certain fairly well defined physical signification which in its essential features must be
preserved if we are to avoid confusion.>*

From the latter remark, Robb’s philosophical position appears closer to Einstein’s
contemporary view of a physical geometry realized by ideal rigid rods and
clocks than to Poincaré’s conventionalist doctrine, which ruled out any empirical
determination of the geometry of phenomenal space. But as mentioned above, Robb
did not admit Einstein’s distant simultaneity, rigid rods, or ideal clocks.

Robb’s philosophy of geometry was an innovative response to the relativity
theories of Einstein, Poincaré, and Minkowski, which he developed from around
1910 until the end of his life.>> In his first publication on geometry (Robb 1911),
Robb’s philosophy found expression in an original analysis of the form of a reflected
light shell for an observer in motion. His approach to this problem employed a
diagram of a three-dimensional space, redrawn here as Figure 1.10; it may be
summarized briefly as follows. An observer in uniform motion along the x-axis
with velocity v = tant transmits a number of light signals in the xy-plane at
an instant of time with index zo = 0. These signals are reflected from a ring of
comoving particles surrounding the observer in such a way that the signals arrive
at the observer’s location at point B at a single instant of time of index z; > zo.

Fig. 1.10 A ring of particles Z
in uniform motion in
xyz-space, after Robb (1911).
Labels z; and B are
introduced for clarity. 2 B
W
(0] X
y

characterized what Penrose (1959) referred to as the “photographic” appearance of a moving
object.

54Robb (1911, 1), original emphasis. Cf. Poincaré, Science and Hypothesis (Poincaré 1905a, 50).
35For appreciations of Robb’s geometry, see Briginshaw (1979) and Cat (2016).
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Neglecting one spatial dimension, Robb’s diagram shows a future lightcone from
the origin in xyz-space that intersects with a past lightcone with vertex at point
B = (z1tan v, 0, z1). The intersection of the two lightcones defines an ellipse on
an oblique plane, which is not illustrated in Robb’s diagram, but which contains
a diagonal of the rectangle in Figure 1.10, and forms an angle i with the x-axis.
By way of comparison, in Minkowski three-dimensional spacetime, the latter plane
corresponds to a spacelike plane of an observer in motion with velocity v.

Iteration of the signaling process produces a representation of an elliptic cylinder
of axis OB, the equation for which Robb derived. From the perspective of an
observer at rest with respect to the origin, Robb argued, the “apparent form of this
ring of particles” is given by a section of the cylinder in the xy-plane. In other
words, the apparent form, for an observer in the rest frame, of the (reflected) light
shell of an observer in motion is an ellipse of eccentricity /1 — vZ, the minor axis
of which is aligned with the ring’s direction of motion. Naturally, Robb concluded
that the length of objects in motion, when measured by light time of flight, appears
to a resting observer to be contracted in the direction of motion.

Although Robb did not say as much, his observer in motion is in a position
to conclude that the reflecting ring of particles forms a circle. If Robb’s observer
assumes, with Poincaré, that her concrete rods are Lorentz contracted, she may
correctly infer that her light shell is an elongated ellipsoid, the dimensions of which
agree, moreover, with Poincaré’s light ellipsoid. Robb’s measurement protocol,
however, featured no such concrete rods. Furthermore, unlike Poincaré, Robb
admitted no privileged frame of reference. Consequently, Robb could no more
uphold Poincaré’s homotheticity of light ellipsoids than he could affirm Einstein’s
covariance of light spheres. His preferred figure of light was the lightcone.

In late 1910, Robb had submitted a like-titled work for publication in the
Proceedings of the London Mathematical Society (LMS).® One of the Society’s
two secretaries (along with J. H. Grace), A. E. H. Love asked Robb to “withdraw his
paper temporarily,” in order to address the criticisms of a referee. Robb appears to
have complained about Love’s request to his former teacher at St. John’s, and LMS
council member, Joseph Larmor. In response to Larmor’s query, Love wrote that a
referee had found the geometrical part of Robb’s paper to be “extremely illogical”
and had recommended rejection. Love noted that the theory of relativity also
entered into the referee’s assessment: Robb’s time index formula was “suggested
by Einstein’s work,” and furthermore, the referee felt “it might be necessary to
adopt Einstein’s assumptions in order to have some basis for Robb’s formula.”’
The LMS reviewer’s critical assessment of Robb’s work was echoed in softer terms
by the Cambridge logician P. E. B. Jourdain (1879-1919). According to Jourdain’s
published abstract, the formulas in Robb’s booklet agreed with those of Einstein,

561 MS Council Minutes, 10 Nov. 1910, LMS archives.

STLove to Larmor, 18 Jan. 1911, op. cit. Sedleian Chair of Natural Philosophy at Oxford since
1899, Love was Secretary (i.e., managing editor) of the LMS from 1890 to 1910.
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Minkowski, and Sommerfeld, but the concepts he employed, including that of the
index of a particle, were such that no summary could be provided.’®

From these assessments, it appears that Robb’s theory was seen in England as
a confusing, mathematically inept variant of Einstein’s theory. The decision by the
LMS council to follow Grace and Love’s recommendation against publication of
Robb’s manuscript meant his theory would not benefit from a stamp of authority
from Britain’s leading mathematicians and theoretical physicists.’® Robb’s rejected
manuscript then became a booklet, the preface to which, dated 13 May 1911,
suggests that its author was still smarting from the LMS council’s negative decision:

From the standpoint of the pure mathematician Geometry is a branch of formal logic, but

there are more aspects of things than one, and the geometrician has but to look at the name

of his science to be reminded that it had its origin in a definite physical problem.
That problem in an extended form still retains its interest.

The italics in the passage above are Robb’s, underlining the triad: geometry—
logic—physics. Beyond the expected retort to the censorious pure mathematician,
Robb’s preface affirmed his identity as a “geometrician” and his consequent right to
“extend” the domain of application of geometry beyond that of both logic and the
measurement of length intervals in the phenomenal space of physics.

From the LMS council’s rejection of Robb’s theory of relativity, one gathers that
this theory had its detractors. But as mentioned above, the theory had its admirers,
as well. One of these admirers was Ludwig Silberstein (1872—-1948). A former
doctoral student of Max Planck in Berlin, Silberstein wrote The Theory of Relativity
(Silberstein 1914), one of the first two textbooks on the subject to be published
in England, with Cunningham’s The Principle of Relativity (Cunningham 1914). A
lecturer in mathematical physics in Rome since 1903, Silberstein based his textbook
on lectures delivered at University College London in 1912-1913. In his preface,
Silberstein explained his wish “to trace the connexion of the modern theory with the
theories and ideas that preceded it.” The modern theory Silberstein referred to here
was essentially that of Einstein and Minkowski.

In a chapter of his textbook entitled “Various Representations of the Lorentz
Transformation,” Silberstein recommended Minkowski diagrams, described as
“very advantageous, especially for the trained geometer of our days” (Silberstein
1914, 131). His overview of the “geometric representation” of the Lorentz trans-
formation began with a two-dimensional spacetime diagram, illustrated by a figure
showing two pairs of coordinate axes, the conjugate hyperbolas x> — ¢?r> = —1
and x2 — ¢2t> = 1, and their asymptotes. He recalled that for any real number «,
the two families of hyperbolas x> — ¢?t> = —« and x> — ¢?t> = « are Lorentz
covariant. Extending his arguments to three spacetime dimensions, and then four,
Silberstein observed (p. 139) that the spacelike hypersurface (t = 0) intersects the
hyperboloid x* + y* + z> — ¢2> = 1 in a unit sphere, x> 4 y> 4 z> = 1. A non-zero

358 Jahrbuch iiber die Fortschritte der Mathematik 43, 1911, p. 559. A succinct summary of Robb’s
index concept is provided by Barrow-Green and Gray (2006).

S9LMS Council Minutes, 9 Feb. 1911, LMS archives.
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rotation of this hypersurface about the origin in a plane orthogonal to the 7-axis cuts
the hyperboloid in an ellipsoid, resulting in a primed space, x"y’z’, and an assorted
orthogonal axis, ¢’. Silberstein continued:
Take the semi-diameters of this ellipsoid as the new units of length measured from the origin
along any direction in the x’y’z’-space. Then the Lorentz transformation, from S to S’, will

be completed, and the new metric surface which, from the S-point of view, is an ellipsoid
of revolution will for the §’-standpoint become a sphere, x> + y’2 + 72 = 1.

According to Silberstein’s analysis, the intersection of a #’-constant hypersurface
with a Lorentz-covariant hyperboloid in spacetime is an ellipsoid of revolution in
the S-frame and a sphere in the §’-frame.

1.8 Applications of the Light Sphere

Minkowski’s spacetime theory was understood to be consistent with Einstein’s
concept of light-sphere covariance, the latter being considered both as a special case
of Lorentz covariance of the laws of physics and as a mathematical theorem. The
figure of a light sphere, however, was never discussed by Minkowski. Nonetheless,
physicists like Wiechert (1911, 691) understood the derivation of the Lorentz
transformation from the form invariance of the light-sphere equation to be the true
“point of departure” of Minkowski’s spacetime theory. Such a reading suggests that
Einstein’s light sphere prepared scientists for the formal requirement of Lorentz
covariance for the laws of physics, as manifested in Minkowski’s theory and as
realized in four-dimensional vector and tensor algebras by Sommerfeld, Abraham,
Gilbert Newton Lewis, Laue, and others.

Minkowski employed the equation of a light sphere in his representation of the
Lorentz transformation by postulating the invariance of the quadratic form:

_x2_y2_22+[2’ (111)

where the velocity of light is rationalized to unity (Minkowski 1908, 66). Next,
invoking the substitution x, x2, x3, x4 for coordinates x, y, z, it, Minkowski

expressed the general Lorentz transformation in terms of a 4 x 4 coefficient matrix
A’

a1 012 o13 X4
o o o 07
A = |¥21 22 023 024 (1.12)
3] 032 0033 (034
Q4] 04 043 Q44

with determinant unity such that

Xp = apiX) + apaxh + ap3xy + apaxy  (h=1,2,3,4). (1.13)
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Cunningham was struck by Minkowski’s equation (1.12) and by the fact that
Minkowski’s restriction on the determinant could be relaxed while preserving the
form of the wave equation.®” The latter insight was exploited in the papers he and
Bateman published on the conformal transformations of Minkowski spacetime in
1909-1910. In addition to the form (1.12), Cunningham (1910, 79) acknowledged
Minkowski’s interpretation of the Lorentz transformation in relation to the light-
wave equation:

It has been pointed out by Minkowski that in a space of four dimensions in which the
coordinates are (x, y, z, ct/=1), the geometrical transformations employed by Einstein, is
simply a finite rotational displacement of the whole space about y = 0, z = 0. The equation
V2V = 0[...] is known to be invariant for such a transformation. But this equation is
invariant for a larger group of transformations than that of rotations, viz., for the group of
conformal transformations in the four dimensional space, which, as is known, is built up
out of inversions with respect to the hyperspheres of the space. (Cunningham 1910, 79)

Cunningham noted further (p. 80) that the hyperspace (x, y, z, ict) is conformal
to the hyperspace (X, Y, Z, icT) in virtue of the form invariance of the light-
sphere equation. He was, however, not the first to notice the conformal covariance
of the wave equation in Minkowski spacetime. For the latter insight, Cunningham
acknowledged a remark made to him by his former colleague in Liverpool, Harry
Bateman.%!

Following his success in the Mathematical Tripos, Bateman undertook two years
of postgraduate study in Paris and Gottingen, then major centers for experimental
and theoretical research on electrons. A central topic of discussion in mathematical
physics at the time, the electron theories of Lorentz and Larmor were introduced
to French readers by Poincaré and Liénard starting in 1897 (Buchwald 1985).
Similarly, in Gottingen, Emil Wiechert, Karl Schwarzschild, and Max Abraham
contributed to electron theory, while the mathematicians Hilbert and Minkowski co-
led seminars on electron theory and electrodynamics in 1905 and 1907, respectively
(Pyenson 1979). When Bateman studied in Gottingen, he was particularly impressed
by Hilbert’s approach to integral equations, a subject he taught at Cambridge in
1908.62

Returning to England in 1906, Bateman joined Cunningham as a lecturer at the
University of Liverpool. There he applied W. Thomson’s method of inversion to
geometrical optics and found the form of the differential equation for light-wave
propagation to be preserved under conformal transformations of four-dimensional
(Minkowski) space, much as Minkowski had observed with respect to the transfor-
mations of the (inhomogeneous) Lorentz group.%? Bateman also remarked that his

60Cunningham (1914, 87-89); for an analysis of the procedure, see Newman and Price (2010).
61See Cunningham (1910, 79). As for Bateman, he credited Cunningham with the discovery of the
conformal transformations of the equations of electrodynamics; see Bateman (1910c, 224).
62L’Enseignement mathématique 10 (1908), 336; Bateman to Hilbert, 1909, Nachlass Hilbert 13,
Handschriftenabteilung, NSUB Géttingen.

63See Minkowski (1909), where the Lorentz transformation is attributed to a paper published in
1887 by Voigt. Minkowski described the covariance of the differential equation of light-wave
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method gave rise to a “geometrical construction” in ray optics, whereby a sphere of
radius ct and center (X, Y, Z) corresponds to an inverse sphere of radius ¢T with
center (x, v, z). In other words, light spheres transform into inverse light spheres.®*

Cunningham and Bateman were atypical in their rapid assimilation of
Minkowski’s four-dimensional approach to electrodynamics, a fact which may
be attributed in part to local factors, including their training in mathematics. In
particular, the technique of conformal transformation was part of the Wrangler’s
mathematical arsenal from at least the mid-1890s, and studies of the conformal
group in space of n dimensions (n > 2) were familiar in Cambridge at the
turn of the century.% In Bateman’s case, postgraduate studies in Géttingen in
1906 afforded him personal acquaintance with Hilbert and Minkowski, both of
whom were instrumental in the elaboration and diffusion of four-dimensional
approaches to physics. In a fashion similar to that of the latter pair, but on
a smaller scale, Cunningham and Bateman employed and promoted four-
dimensional techniques: Bateman (1909) published Maxwell’s equations and
Lorentz’s microscopic equations in four-vector form, while Cunningham’s treatise
on relativity (Cunningham 1914) featured an introduction to four-dimensional
vector calculus.

Some of the earliest contributions to relativity theory are due to one of the
youngest relativists: Max Laue (1879-1960). A former doctoral student, then
assistant to Max Planck, upon whose suggestion he wrote a doctoral dissertation
(Laue 1903) on interference phenomena, Laue first heard of Einstein’s relativity
paper in Planck’s colloquium. As he recalled later, he found that Einstein’s paper
presented “epistemological difficulties” that he was initially unable to master.®®

Over the next 5 years, Laue came to master a few of the difficulties presented
by Einstein’s theory, beginning with the derivation of the Fresnel drag coefficient
from the velocity addition formula (Laue 1907). He adopted a comparative approach
to the electrodynamics of moving bodies, publishing a series of papers evaluating
the various theoretical options. One of his first contributions compared the electron
theories of Abraham and Lorentz to what he called Einstein’s “theory of relativity”
(Laue 1908, 838). The differences between the two electron theories, Laue found,

propagation as the “impetus and true motivation” for assuming the covariance of all laws of physics
with respect to the transformations of the Lorentz group (p. 80).

64See Bateman (1908, 629), read 8 Sept. 1908. No mention is made in this paper of the source of
the transformations, but a subsequent work by Bateman credits Cunningham with the “discovery of
the formula of transformation in the case of an inversion in the four-dimensional space” and cites
papers by Hargreaves and Minkowski employing a four-dimensional space with one imaginary axis
(Bateman 1909, 224, communicated 9 Oct. 1908). Minkowski’s paper (Minkowski 1908, published
5 April 1908) was cited by both Cunningham and Bateman. Remarked first by Whittaker (1951,
vol. 2, 195), the significance of Minkowski’s spacetime theory for the contributions of Cunningham
and Bateman is contested by Warwick (2003, 423 n. 49). On the “light-geometric approach” to the
foundations of relativity by Cunningham and Bateman, see Jammer (1979, 222).

%5 For example, see Warwick (2003, 421) and Bromwich (1901).

%yon Laue (1961, XVIII-XXI); von Laue to Margot Einstein, 23 Oct. 1959, cited by Holton (1965,
39).
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were too small to matter as far as the radiation from a charged particle in motion
was concerned, but there was an advantage in adopting Einstein’s theory, in that it
was “much simpler” to solve the latter problem (ibid.). When in 1911 Laue extended
Minkowski’s four-dimensional approach to the dynamics of matter via the formal
concept of a “world tensor,” he was able to shed new light on the nature of Poincaré’s
hypothetical binding potential, later known as “Poincaré pressure,” and on the null
result of the Trouton-Noble experiment of 1903.

Recognizing Laue’s skill in addressing the questions posed by relativity theory,
the publishing house of Vieweg asked him in 1910 to write what was to become the
first textbook on relativity.®® There Laue identified Einstein as the principal founder
of the theory of relativity. He did so, however, while expounding a four-dimensional
vector calculus he attributed to Minkowski, but which owed more to Sommerfeld’s
formalism.%® Laue’s text thus helped established Einstein as a leading theorist in the
new field of relativity and to promulgate four-dimensional tensor calculus.’’

One of the results Laue included in his textbook was the light-sphere-based
illustration of the relativity of simultaneity. Laue’s argument and illustration drew
on an idea expressed earlier by Planck in lectures delivered at Columbia University
in 1909 and published the following year. Planck wanted to convey graphically what
he called the “new difficulty” introduced by the principle of relativity, concerning
the propagation velocity of light in the ether (Planck 1910, 113). To do so, he
referred to two diagrams (see Figure 1.11), representing a section of a light sphere
for observers A and B, respectively, with relative velocity v. Taken separately, each
of the two diagrams suggests that light isotropy is valid only for observers at rest,
since apparently, only such observers will find themselves at the center of the light
sphere. Planck stressed, however, that no known physical phenomena distinguished

Fig. 1.11 Meridional section
of a light sphere for an
observer A at rest (left) and
an observer B at rest (right),
after Planck (1910, 114,119).

67Laue (1911b); Janssen and Mecklenburg (2006).
68yon Laue (1952).
%9See Max Born’s review in Physikalische Zeitschrift (Born 1912).

790n Laue’s portrayal of Einstein’s contribution, see Staley (1998). Laue’s contributions to
relativity are detailed by Norton (1992) and Rowe (2008).
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the two frames and that the difficulty could be overcome by admitting, with Einstein,
the Lorentz covariance of the laws of physics (Planck 1910, 121).7!

Laue took a different approach, by adapting Planck’s light figures, in order to
address the notion of relative simultaneity. Repeated in six editions by 1956, Laue’s
light figure became a staple of presentations of relativity theory. Pared to essentials,
his argument (Laue 1911a, 34) focused on the simultaneity relation as judged by
two observers, respectively, at rest and in uniform motion. A “short light signal” is
emitted in all directions by a source at rest at a “material point” A in inertial frame
S at time 79 = 0. If the origin of coordinates is fixed at point A, then at time ¢ > 0,
the light signal reaches the points described by the equation:

x2+y2+z2—czt2=0. (1.14)

Let two “material points” B and C at rest in S be equidistant from point A, such
that the light signal reaches them both at time 7 in S. Let a second frame S’ translate
uniformly with respect to S, in a direction parallel to the line segment joining B and
C, such that the material points A, B, C have velocity v with respect to §’. In §’,
furthermore, the origin of the primed coordinates x’, y’, 7/, ' coincides with that of
S at time r = ¢’ = 0. A light signal propagating in all directions from point A at
time 7o = ¢/, = 0 will reach the surface of a certain sphere at time #' > 0, such that:

x/2 +y/2+z/2 _C2t/2 —0. (1.15)

The center of the light sphere in S’ at time ¢’ coincides with point O, as shown in
Figure 1.12, while the origin of S has traveled a distance vt’ from O and is located
at point A’ with respect to frame §’.”> With these preliminaries in place, Laue
concluded that in frame S’ there exists no value of time ¢’ for which the material

Fig. 1.12 Meridional section

of a simultaneity light sphere B+
for frame S’ with origin O,

after Laue (1911a, 35).

1 Planck’s argument, which builds on that of Einstein (see above, § 1.2), has inspired many
textbook authors. For an example employing a spherical array of photomultipliers at rest in two
inertial frames in relative motion, see Rosser (1967, 76).

72Laue’s use of primes in his light-sphere diagram is peculiar, but is reproduced intact in
Figure 1.12, in keeping with the first four editions of his textbook (up to 1921). In the sixth edition
(von Laue 1955, 29), A, B, and C are all unprimed, and the primed symbols are as expected: O’
and t'.
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points B and C lie on the same spherical surface and that, consequently, B and C
are not reached by the light signal simultaneously in frame S’

What the diagram shows, Laue wrote, is that in frame §’, a light signal reaches
point C before it reaches point B. For every inertial system, he concluded, there is a
“particular time, differing from that of other systems.” For this insight, Laue credited
the “acuity and elevated philosophical sense of Einsteinian ideas” and proceeded
to derive the Lorentz transformation, invoking the form invariance of the wave
equation, along with linearity and symmetry constraints, and noting the fact that
the Lorentz transformation follows just as well from the invariance of the sum of
squares

xz—}—yz—i—zz—cztz. (1.16)

The light sphere formed the centerpiece of Laue’s discussion of the Lorentz
transformation. As mentioned above, Cunningham and Einstein had employed the
light-sphere demonstration in 1907. The fact that Laue preferred to invoke the form
invariance of the wave equation in his textbook is of no particular significance, as
he, too, went on to employ the light-sphere demonstration (see von Laue 1913a,
110).

Laue’s treatise skillfully combined and repackaged results obtained in the
new field of relativity, including the Minkowski diagram and the light-sphere
interpretation of the Lorentz transformation and simultaneity relations. The treatise
featured the light sphere in a discussion of the foundations of relativistic kinematics
and, in the revised and extended second edition of 1913, employed the term “light
sphere” in this context (Lichtkugel, von Laue 1913b, 36).

Both the relativity of simultaneity and the proof of the Lorentz transformation
had previously been demonstrated with a light sphere by Otto Berg (1874-1939),
a Privatdozent at the University of Greifswald, in an essay entitled “The relativity
principle of electrodynamics.” Taking his cue from Minkowski’s bold claim that the
new ideas about time and space in relativity theory had sprung from the ground of
experimental physics (Minkowski 1909), Berg, an experimental physicist, prefaced
his pamphlet with the opinion that “many philosophers will doubt” such a claim.
He then set out to examine the “experimental foundations of the principle [of
relativity],” a topic Minkowski had scrupulously avoided. In light of Bucherer’s
attack on the utility of the light-sphere hypothesis for explaining experimental
results, mentioned above (Section 1.2), Berg’s recourse to the light sphere in this
essay comes as a surprise. But as Berg observed, the “clarification of ideas” in
relativity theory realized by Einstein and Minkowski had “hardly anything” to do
with experiments. In any case, Lorentz’s theory was “just as good” as the newer
theories, as far as representing the latest experimental results was concerned (Berg
1910, 357).

Berg’s treatment of the relativity of simultaneity differed little from that of
Laue, mentioned above, with one exception: Berg did not illustrate his discussion
with a diagram. He presented his light-sphere demonstration of the relativity of
simultaneity as a “concrete example” of Einstein’s light postulate and one that later
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served his derivation of the Lorentz transformation. Laue must have admired Berg’s
approach, as he employed it without change, apart from the addition of a graphic
illustration (redrawn here as Figure 1.12).

Laue’s light-sphere-based demonstration of the relativity of simultaneity had
another forerunner in the person of Harry Bateman. Following Cunningham’s
lead, Bateman (1912, 340) reckoned Einstein’s light postulate to be equivalent to
admitting the existence of a group of transformations for which (1.16) is covariant.
By mid-1910, Bateman (1910b, 624) realized that the Lorentz transformation did
not alter the form of tangent-oriented spheres. This insight may be what led him
to attribute the origin of the Lorentz transformation not to Voigt, in the manner of
Minkowski (1909), but to the French differential geometer Albert Ribaucour, known
for his contributions to the geometry of spheres (Ribaucour 1870).

In virtue of his understanding of the relation between the Lorentz transformation
and the fifteen-parameter group G5, Bateman went on, in a paper completed in
December 1910, to compare the results of Cunningham and himself with those of
Poincaré and the leading German relativists:

According to the general principles of group-theory, the quantities and relations which are
invariant with regard to the principal group should represent true physical quantities and
relations. Some of these invariants for the group G5 have been found by Einstein, Poincaré,
Minkowski, Planck, Cunningham and the author.”® It is desirable that all the principal
invariants and covariants for the group should be found, for then we shall perhaps be able
to decide whether Einstein’s conditions of observation are the right ones or not. (Bateman
1912, 340)

Bateman’s accomplishment was duly recognized by Philipp Frank (1884-1966),
with whom he probably crossed paths in Géttingen in 1906. Frank (1911) described
the covariance of the Maxwell equations under the Lorentz group as “one of the most
important mathematico-physical facts of modern physics” and identified Lorentz,
Minkowski, and Bateman as the principal investigators in this area of study, to
which he and the Viennese mathematician Hermann Rothe (1882-1923) were active
contributors, along with von Ignatowsky.

In a wide-ranging review of the consequences of relativity theory for the
philosophy of space and time, Bateman drew on Ribaucour’s transformations
of spheres; his idea was to investigate the “physical aspect of time in order to
understand the idea of simultaneity” (Bateman 1910a, 2). In what Bateman called a
“view,” an ordered pair of spheres represents a four-vector, the components of which
are differences of spatial coordinates and radii. Four-vector magnitude is given by
the length of a shared tangent, such that that a null vector corresponds to spheres in
contact.

By considering Ribaucour’s spheres as light spheres, Bateman demonstrated the
relativity of simultaneity and the impossibility of hyperlight velocities. Bateman’s

73The transformations of the 15-parameter group of conformal transformations G15 correspond
to what Bateman called the “spherical wave transformations.” On the Bateman-Cunningham
discovery of the covariance of Maxwell’s equations under G5, see Rowe (1999, 211), and Kastrup
(2008).
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Fig. 1.13 A light source in
motion, redrawn from
Bateman (1910a). A

depiction of a light source in uniform translation (Figure 1.13) features four
nonconcentric light spheres. His figure differs little from that employed by Poincaré
in 1906-1907 (Figure 1.3); only the direction of motion is reversed. Imagining a
space filled with light-synchronized clocks, Bateman argued with respect to his
diagram that the wave front of only one light sphere may pass through a given point
A at a given time, such that behavior of light waves makes manifest the simultaneity
relation.

In subsequent papers, Bateman neglected to discuss or apply his diagrammatic
interpretation of four-vectors, which quickly fell from view. A similar interpretation
of four-vectors, proposed by a professor of descriptive geometry in Braunschweig,
Timerding (1912, 1915), fared no better. Few theorists in Britain were then familiar
with four-vectors, and consequently, few were in a position to grasp the full meaning
of Bateman’s potent image of tangent spheres. Bateman’s illustration of the Einstein
simultaneity relation was thereby less comprehensible to his contemporaries than
the simpler one concocted by Laue, which involved only a passing knowledge of
plane geometry.

1.9 Light-Figure Skepticism

More than a few physicists felt that the grounds for accepting light-sphere covari-
ance as the foundation of relativity were not compelling. For example, as mentioned
above, A. H. Bucherer saw no need to adopt Einstein’s view of the light sphere. This
section takes up the cases of two light-figure skeptics, which is to say, physicists who
contested the epistemic priority accorded by Einstein to light waves: Emil Wiechert
(1861-1928) and Waldemar von Ignatowsky (1875-1943).

Minkowski’s colleague in Gottingen, the geophysicist Emil Wiechert admired
Minkowski’s theory, but like many scientists, he remained attached to the notion of
an ether. Wiechert’s ether was attached by stipulation to an inertial frame and was
entirely consistent, in his view, with Minkowski’s spacetime theory (Wiechert 1911,
757). In an essay entitled “The principle of relativity and the ether,” Wiechert held
that both sound waves and light waves that are spherical in one (absolute) frame are
flattened in the direction of motion of an observer translating with respect to this
frame. Even if Wiechert granted that Einstein was the first to develop a “rigorous
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understanding of Lorentz covariance” and to understand the conventional nature of
distant simultaneity, he did not feel compelled to adopt Einstein’s kinematics.”* In a
review of Wiechert’s theory, Laue (1912) found fault with his logic, but he admitted
with Wiechert that the question of the existence of an absolute frame belonged to
philosophy, not to physics.

Like Wiechert, von Ignatowsky admired Minkowski’s spacetime theory, but was
dissatisfied with Einstein’s relativity. In particular, Einstein’s light postulate seemed
unobvious to him. Nonetheless, he was impressed by how the light constant ¢
appeared in Minkowskian relativity to be “more a universal spacetime constant than
the speed of light” (von Ignatowsky 1910, 793).7> What von Ignatowsky sought to
derive were coordinate transformations that guarantee relativity of inertial frames,
but do not depend on the light postulate. Introducing the usual constraints, and
denoting by p a differential quotient depending on position x, time ¢, and velocity
v, he found (in modified notation):”®

dx' = pdx — pvdt, dt' = —pvndx + pdt, (1.17)
where 7 is a universal constant, such that
P2 =1/(1 —v%n). (1.18)

In order to determine the value of the constant n, von Ignatowsky considered the
equipotential surface of a point charge in uniform motion. For a comoving observer,
the equipotential surface has the form of a sphere, but for an observer at rest, the
equipotential surface is described by a Heaviside ellipsoid. In other words, for an
observer at rest, the equipotential surface is a rotational ellipsoid, the longitudinal
and transverse axes of which are related by 1 :: /1 — v2/c2. Von Ignatowsky’s
transformation requires that a spherical surface attached to the comoving observer’s
frame transform to a flattened ellipsoid in the frame of an observer at rest, such that

J1I—=v%/c2 =1 —1vn. (1.19)

Consequently, n = 1/c?, such that both ¢ and n are now universal constants. Von
Ignatowsky’s identification of ¢ as a universal constant depends on the form of
the equipotential surface, a form independent of the principle of relativity, as von
Ignatowsky was careful to point out.”’

"4 Wiechert to Lorentz, 9 March 1912, in Kox (2008, 359); Wiechert (1911, 756).

75SBorn in Tiflis (Tbilisi, Georgia), von Ignatowsky earned his Ph.D. in physics at the University of
Giessen in 1909 and found employment with the Leitz optical firm in Wetzlar (Klein et al. 1993,
251).

760n von Ignatowsky’s transformation see Jammer (1979, 215), Torretti (1996, 76), Brown (2005,
105), and Darrigol (2014, 139).

710n the relation between Lorentz contraction and the Heaviside ellipsoid, see Hunt (1988).
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Von Ignatowsky noted in passing that v represents the “speed of one of
our worlds,” i.e., one of “unendlessly many reference frames.” While the latter
description recalls Cunningham’s multiple-ether view of relativity (Section 1.2), it
is more likely an additional echo of Minkowski’s Cologne lecture. In a final tribute
to Minkowski’s spacetime realism, von Ignatowsky concluded his derivation with
the following credo:”®

Now we should not consider an inertial coordinate system as something like a mere
mathematical entity, but we must instead think of it as a material world with its observers
and synchronized clocks. (von Ignatowsky 1910, 794)

Although von Ignatowsky drew freely on Minkowskian language and imagery,
he did not adopt Minkowski’s four-dimensional calculus, preferring to rewrite
the latter’s four-dimensional “vectors of the first and second type” in the form
of ordinary three-vectors. More than likely, this was a choice guided by his
recent investment in three-dimensional vector analysis, in the form of a book (von
Ignatowsky 1909) published in Eugen Jahnke’s Teubner collection “Mathematisch-
Physikalische Schriften fiir Ingenieure und Studierende.”

Wiechert and von Ignatowsky were uneasy with the special evidentiary status
accorded by Einstein to light signals, as reflected in their approaches to relativity.
Wiechert’s rejection of Einstein’s radical reform of kinematics found inspiration in
Minkowski’s spacetime theory, in virtue of the absolute nature of the direction of
a particle’s four-velocity (Wiechert 1911, 757). Von Ignatowsky’s admiration for
Minkowski’s geometric interpretation of the light constant ¢ and concomitant rejec-
tion of the latter’s four-dimensional formalism suggest that one could accommodate
a Minkowskian ontology while rejecting Minkowskian formalism, which is to say,
the precise opposite of what Laue advised in his textbook (Walter 2010).

1.10 Discussion

Introduced without fanfare by Einstein in connection with his postulates of relativity
and universal lightspeed invariance, the notion of light-sphere covariance engaged
the imagination of theorists and experimentalists alike. A rival light-shell theory
was soon proposed, in the form of Poincaré’s light ellipsoid and assorted two-
dimensional diagrams. At that time, Poincaré’s theory of the light ellipsoid had
much to recommend it, including a privileged coordinate frame and a simple
diagram-based derivation of the Lorentz transformation. Poincaré did not seek to
publish his derivation, however, and soon Cunningham and Einstein published their
own equally elementary algebraic derivations of the Lorentz transformation, based
on light-sphere covariance.

78«Nun diirfen wir aber unter einem Ruhekoordinatensystem nicht etwa nur ein mathematisches
Gebilde verstehen, sonder miissen uns dabei eine materielle Welt mit ihren Beobachtern und
synchronem Uhren denken.”
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Einstein’s kinematics lacked a visually intuitive model until 1908, when
Minkowski proposed a model of spacetime that subtended an elementary geometric
derivation of the Lorentz transformation, albeit a derivation that Minkowski did
not see fit to publish himself. Minkowski did not discuss the light sphere directly,
either. Instead, he presented the Lorentz covariance of the light-wave equation
as a compelling formal argument in favor of his four-dimensional approach to
physics, and cast light-sphere covariance in four-dimensional language, introducing
the lightcone structure of spacetime. His expression of the Lorentz transformation
as a 4 x 4 matrix inspired investigations by Cunningham and Bateman of the
conformal covariance of Maxwell’s equations, which suggested the possibility of
a generalization of the principle of relativity to frames in non-inertial motion. The
lightcone itself inspired Robb’s theory of space and time, intended originally as an
alternative to Einsteinian relativity.

The idea of light-sphere covariance traveled across both national and disciplinary
boundaries, being carried initially by journals of physics, philosophy, and general
science in Germany and Great Britain. When Max Laue wrote his treatise on the
principle of relativity (Laue 1911a), he passed over the contributions of Cunningham
and Bateman and drew instead on the work of a fellow German Privatdozent, Otto
Berg. Cunningham and Bateman were colleagues for a year, while Bateman and
Laue heard lectures by Hilbert and Minkowski in Gottingen. All of these scientists
were young men; only Berg had passed thirty. None held a permanent university
position at the time of the contributions studied here, and all but Berg went on to
obtain academic appointments.”’’

According to the recollections of Frank (1947, 206), Einstein remarked to him
that he could “hardly understand Laue’s book.” Frank read Einstein’s comment as a
reflection on the mathematical sophistication of Laue’s treatise, but the mathematics
employed by Laue were certainly not new to Einstein. In light of the several
contributions to relativity theory and the theory of the electron after 1905 reviewed
in this chapter, I suggest an alternative reading of Einstein’s offhand comment to
Frank on Laue’s treatise: Einstein found the content of Laue’s book to stem in
large part from the work of others; as such, for Einstein Laue’s book was not
incomprehensible, just foreign to his own way of thinking about relativity.

Although the concept of light-sphere covariance crossed national and disci-
plinary boundaries with apparent ease, it did not meet with universal assent. There
were those, like Bucherer, who found Einstein’s argument in favor of light-sphere
covariance to be unconvincing. The special evidentiary status assigned to the
behavior of light waves in Einstein’s theory troubled physicists like von Ignatowsky
and Wiechert, who sought to treat electromagnetic waves in the same manner
as other propagation phenomena. The case of Poincaré and Robb is particularly

79Berg went to work for the Siemens-Halske engineering firm in Berlin, where he co-discovered
element 75 (Rhenium) with Walter Noddack and Ida Tacke.
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instructive in this regard, in that they both shared Einstein’s high epistemic regard
for light waves, but deplored — for different philosophical reasons — Einstein’s metric
interpretation of the light sphere.

Four decades after the events described in this chapter, von Laue wrote about
the “somewhat excessive polemic” against relativity as a consequence of “lack
of insight” on the part of the theory’s opponents (von Laue 1947, 68). The form
of a light pulse for moving observers was a topic about which leading theorists
disagreed, as we have seen. Von Laue also recalled a “decisive turn” for relativity
theory, triggered by Einstein’s view of the equal epistemic value of space and time
measurements among inertial frames of reference. Closely related to Einstein’s
belief, the derivation of the Lorentz transformation via covariance of the light-sphere
equation stabilized interpretations of the transformation along Einsteinian lines and
contributed powerfully to the emergence of a unified doctrine of the physics of
inertial frames. One consequence of this movement was a heightened recognition of
Einstein as the principal architect of the theory of relativity, as expressed by Laue’s
1911 treatise and its six re-editions.
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