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Abstract

The law of gravitational attraction is a window on three formal approaches
to laws of nature based on Lorentz-invariance: Poincaré’s four-dimensional
vector space (1906), Minkowski’s matrix calculus and spacetime geome-
try (1908), and Sommerfeld’s 4-vector algebra (1910). In virtue of a com-
mon appeal to 4-vectors for the characterization of gravitational attraction,
these three contributions track the emergence and early development of four-
dimensional physics.
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Introduction
In July, 1905, Henri Poincaré (1854–1912) proposed two laws of gravitational
attraction compatible with the principle of relativity and all astronomical obser-
vations explained by Newton’s law. Two years later, in the fall of 1907, Albert
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Einstein (1879–1955) began to investigate the consequences of the principle of
equivalence for the behavior of light rays in a gravitational field (Einstein 1907).
The following year, Hermann Minkowski (1864–1909), Einstein’s former mathe-
matics instructor, borrowed Poincaré’s notion of a four-dimensional vector space
for his new matrix calculus, in which he expressed a novel theory of the elec-
trodynamics of moving media, a spacetime mechanics, and two laws of gravita-
tional attraction. Following another two-year hiatus, Arnold Sommerfeld (1868–
1951) characterized the relationship between the laws proposed by Poincaré and
Minkowski, calling for this purpose both on spacetime diagrams and a new 4-
vector formalism.

Of these four efforts to capture gravitation in a relativistic framework, Ein-
stein’s has attracted the lion’s share of attention, and understandably so in hind-
sight, but at the expense of a full understanding of what is arguably the most sig-
nificant innovation in contemporary mathematical physics: the four-dimensional
approach to laws of physics. In virtue of the common appeal made by Poincaré,
Minkowski, and Sommerfeld to four-dimensional vectors in their studies of grav-
itational attraction, their respective contributions track the evolving form of four-
dimensional physics in the early days of relativity theory.1 The objective of this
paper is to describe in terms of theorists’ intentions and peer readings the emer-
gence of a four-dimensional language for physics, as applied to the geometric and
symbolic expression of gravitational action.

The subject of gravitational action at the turn of the twentieth century is well-
suited for an investigation of this sort. This is not to say that the reform of New-
ton’s law was a burning issue for theorists. While several theories of gravitation
claimed corroboration on a par with that of classical Newtonian theory, contempo-
rary theoretical interest in gravitation as a research topic–including the Lorentz-
invariant variety–was sharply curtailed by the absence of fresh empirical chal-
lenges to the inverse-square law. Rather, in virtue of the stability of the empirical
knowledge base, and two centuries of research in celestial mechanics, the physics
of gravitation was a well-worked, stable terrain, familiar to physicists, mathemati-
cians and astronomers alike.2

The leading theory of gravitation in 1905 was the one discovered by Isaac
Newton over two centuries earlier, based on instantaneous action at a distance.
When Poincaré sought to bring gravitational attraction within the purview of the
principle of relativity, he saw it had to propagate with a velocity no greater than
that of light in empty space, such that a reformulation of Newton’s law as a re-
tarded action afforded a simple solution.

Newton’s law was the principal model for Poincaré, but it was not the only one.
With the success of Maxwell’s theory in explaining electromagnetic phenomena
(including the behavior of light) during the latter third of the nineteenth century,
theories of contiguous action gained greater favor with physicists. In 1892, the
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Dutch theorist H.-A. Lorentz produced a theory of mobile charged particles inter-
acting in an immobile ether, that was an habile synthesis of Maxwell’s field theory
and Wilhelm Weber’s particle theory of electrodynamics. After the discovery of
the electron in 1897, and Lorentz’s elegant explanation of the Zeeman effect, cer-
tain charged microscopic particles were understood to be electrons, and electrons
the building-blocks of matter.3

In this new theoretical context of ether and electrons, Lorentz derived the force
on an electron moving in microscopic versions of Maxwell’s electric and magnetic
fields. To determine the electromagnetic field of an electron in motion, Alfred
Liénard and Emil Wiechert derived a formula for a potential propagating with
finite velocity. In virtue of these two laws, both of which fell out of a Lagrangian
from Karl Schwarzschild, the theory of electrons provided a means of calculating
the force on a charged particle in motion due to the fields of a second charged
particle in motion.4

An electron-based analogy to gravitational attraction of neutral mass points
was then close at hand. Lorentz’s electron theory was held in high esteem by
early twentieth-century theorists, including both Poincaré and Minkowski, who
naturally catered to the most promising research program of the moment. They
each proposed two force laws: one based on retarded action at a distance, the other
appealing directly to contiguous action propagated in a medium. All four particle
laws were taken up in turn by Sommerfeld.5

Several other writers have discussed Poincaré’s and Minkowski’s work on
gravitation. Of the first four substantial synoptic reviews of the two theories,
none employed the notation of the original works, although this fact itself reflects
the rapid evolution of formal approaches in physics. Early comparisons were
carried out with either Sommerfeld’s 4-vector formalism (Sommerfeld 1910b;
Kretschmann 1914), a relative coordinate notation (De Sitter 1911), or a mix of
ordinary vector algebra and tensor calculus (Kottler 1922). No further comparison
studies were published after 1922, excepting one summary (North 1965, 49–50),
although since the 1960s, the work of Poincaré and Minkowski has continued to
incite historical interest.6 Sommerfeld’s contribution, while it inflected theoretical
practice in general, and contemporary reception of Lorentz-covariant gravitation
theory in particular, has been neglected by historians.

The present study has three sections, beginning with Poincaré’s contribution,
moving on in the second section to Minkowski’s initial response to Poincaré’s
theory, and a review of his formalism and laws of gravitation. A third section is
taken up by Sommerfeld’s interpretation of the laws proposed by Poincaré and
Minkowski. The period of study is thus bracketed on one end by the discovery
of special relativity in 1905, and on the other end by Sommerfeld’s paper. While
the latter work did not spell the end of either 4-vector formalisms or Lorentz-
covariant theories of gravitation, it was the first four-dimensional vector algebra,
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and represents a point of closure for a study of the emergence of a conceptual
framework for four-dimensional physics.

1 Henri Poincaré’s Lorentz-invariant laws of gravi-
tation

Poincaré’s memoir on the dynamics of the electron (1906), like Einstein’s rela-
tivity paper (Einstein 1905), contains the fundamental insight of the physical sig-
nificance of the group of Lorentz transformations, not only for electrodynamics,
but for all natural phenomena. The law of gravitation, to no lesser extent than the
laws of electrodynamics, fell presumably within the purview of Einstein’s theory,
but this is not a point that Einstein, then working full time as a patent examiner
in Bern, chose to elaborate upon immediately. Poincaré, on the other hand, as
Professor of Mathematical Astronomy and Celestial Mechanics at the Sorbonne,
could hardly finesse the question of gravitation. In particular, his address to the
scientific congress at the St. Louis World’s Fair, on 24 September, 1904, had pin-
pointed Laplace’s calculation of the propagation velocity of gravitation as a po-
tential spoiler for the principle of relativity.7

There may have been another reason for Poincaré to investigate a relativistic
theory of gravitation. In the course of his study of Lorentz’s contractile elec-
tron, Poincaré noted that the required relations between electromagnetic energy
and momentum were not satisfied in general. Raised earlier by Max Abraham,
the problem was considered by Lorentz to be a fundamental one for his electron
theory.8

Solving the stability problem of Lorentz’s contractile electron was a trivial
matter for Poincaré, as it meant transposing to electron theory a special solution
to a general problem he had treated earlier at some length: to find the equilibrium
form of a rotating fluid mass.9 He postulated a non-electromagnetic, Lorentz-
invariant “supplementary” potential that exerts a binding (negative) pressure in-
side the electron, and reduces the total energy of the electron in an amount pro-
portional to the volume decrease resulting from Lorentz contraction. When com-
bined with the electromagnetic field Lagrangian, this binding potential yields a
total Lagrangian invariant with respect to the Lorentz group, as Poincaré required.

In accordance with the electromagnetic world-picture and the results of Kauf-
mann’s experiments, Poincaré supposed the inertia of matter to be exclusively of
electromagnetic origin, and he set out, as he wrote in §6 of his paper,

to determine the total energy due to electron motion, the correspond-
ing action, and the quantity of electromagnetic momentum, in order
to calculate the electromagnetic masses of the electron.
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Non-electromagnetic mass does not figure in this analysis, and consequently, one
would not expect the non-electromagnetic binding potential to contribute to the
tensorial electromagnetic mass of the electron, although Poincaré did not state
this in so many words. Instead, immediately after obtaining an expression for
the binding potential, he derived the small-velocity, “experimental” mass from
the electromagnetic field Lagrangian alone, neglecting a contribution from the
binding potential. The mass of the slowly-moving Lorentz electron was then equal
to the electrostatic mass, just as one would want for an electromagnetic foundation
of mechanics. This fortuitous result, which revised Lorentz’s electron mass value
downward by a quarter, was obtained independently by Einstein, using a method
that did not constrain electron structure.10 Although the question of electron mass
was far from resolved, Poincaré had shown that the stability problem represented
no fundamental obstacle to the pursuit of a new mechanics based on the concept
of a contractile electron.

With this obstacle out of the way, Poincaré proceeded as if the laws of me-
chanics were applicable to the experimental mass of the electron.11 Noting that
the negative pressure deriving from his binding potential is proportional to the
fourth power of mass, and furthermore, that Newtonian attraction is itself propor-
tional to mass, Poincaré conjectured that

there is some relation between the cause giving rise to gravitation and
that giving rise to the supplementary potential.

On the basis of a formal relation between experimental mass and the binding
potential, in other words, Poincaré predicted the unification of his negative internal
electron pressure with the gravitational force, in a future theory encompassing all
three forces.12

On this hopeful note, Poincaré began his memoir’s ninth and final section, en-
titled “Hypotheses concerning gravitation.” Lorentz’s theory, Poincaré explained,
promised to account for the observed relativity of motion:

In this way Lorentz’s theory would fully explain the impossibility
of detecting absolute motion, if all forces were of electromagnetic
origin.13

The hypothesis of an electromagnetic origin of gravitational force had been ad-
vanced by Lorentz at the turn of the century. On the assumption that the force
between “ions” (later “electrons”) of unlike sign was of greater magnitude at a
given separation than that between ions of like sign (following Mossotti’s con-
jecture), Lorentz represented gravitational attraction as a field-theoretical phe-
nomenon analogous to electromagnetism, reducing to the Newtonian law for bod-
ies at rest with respect to the ether. Lorentz’s theory tacitly assumed negative
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energy density for the “gravitational” field, and a gravitational ether of huge in-
trinsic positive energy density, two well-known sticking-points for Maxwell. An-
other difficulty stemmed from the dependence of gravitational force on absolute
velocities.14

Neither Lorentz’s gravitation theory nor Maxwell’s sticking-points were men-
tioned by Poincaré in the ninth section of his memoir. Instead, he recalled a
well-known empirical fact: two bodies that generate identical electromagnetic
fields need not exert the same attraction on electrically neutral masses. Although
Lorentz’s theory clearly accounts for this fact, Poincaré concluded that the gravi-
tational field was distinct from the electromagnetic field. What this tells us is that
Poincaré’s attention was not focused on Lorentz’s theory of gravitation.15

To Poincaré’s way of thinking, it was the impossibility of an electromagnetic
reduction of gravitation that had driven Lorentz to suppose that all forces trans-
form like electromagnetic ones:

The gravitational field is therefore distinct from the electromagnetic
field. Lorentz was obliged thereby to extend his hypothesis with
the assumption that forces of any origin whatsoever, and gravita-
tion in particular, are affected by a translation (or, if one prefers, by
the Lorentz transformation) in the same manner as electromagnetic
forces.16

It was the cogency of the latter hypothesis that Poincaré set out to examine in
detail, with respect to gravitational attraction. The situation was analogous to the
one Poincaré had encountered in the case of electron energy and momentum men-
tioned above, where he had considered constraining internal forces of the elec-
tron to be Lorentz-invariant. Such a constraint solved the problem immediately,
but Poincaré recognized that it was inadmissible nonetheless, because it violated
Maxwell’s theory (p. 136). A similar violation in the realm of mechanics could
not be ruled out in the case of gravitation, such that a careful analysis of the ad-
missibility of the formal requirement of Lorentz-invariance was called for.

Poincaré set out to determine a general expression for the law of gravitation
in accordance with the principle of relativity. A relativistic law of gravitation, he
reasoned, must obey two constraints distinguishing it from the Newtonian law.
First of all, the new force law could no longer depend solely on the masses of the
two gravitating bodies and the distance between them. The force had to depend
on their velocities, as well. Furthermore, gravitational action could no longer be
considered instantaneous, but had to propagate with some finite velocity, so that
the force acting on the passive mass would depend on the position and velocity
of the active mass at some earlier instant in time. A gravitational propagation
velocity greater than the speed of light, Poincaré observed, would be “difficult to
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understand,” because attraction would then be a function of a position in space not
yet occupied by the active mass (p. 167).

These were not the only conditions Poincaré wanted to satisfy. The new law of
gravitation had also (1) to behave in the same way as electromagnetic forces under
a Lorentz transformation, (2) to reduce to Newton’s law in the case of relative rest
of the two bodies, and (3) to come as close as possible to Newton’s law in the
case of small velocities. Posed in this way, Poincaré noted, the problem remains
indeterminate, save in the case of null relative velocity, where the propagation
velocity of gravitation does not enter into consideration. Poincaré reasoned that if
two bodies have a common rectilinear velocity, then the force on the passive mass
is orthogonal to an ellipsoid, at the center of which lies the active mass.

Undeterred by the indeterminacy of the question in general, Poincaré set about
identifying quantities invariant with respect to the Lorentz group, from which he
wanted to construct a law of gravitation satisfying the constraints just mentioned.
To assist in the identification and interpretation of these invariants, Poincaré re-
ferred to a space of four dimensions. “Let us regard,” he wrote,

x, y, z, t
√
−1

δx, δy, δz, δt
√
−1

δ1x, δ1y, δ1z, δ1t
√
−1,

as the coordinates of 3 points P , P ′, P ′′, in space of 4 dimensions. We
see that the Lorentz transformation is merely a rotation in this space
about the origin, regarded as fixed. Consequently, we will have no
distinct invariants apart from the 6 distances between the 3 points P ,
P ′, P ′′, considered separately and with the origin, or, if one prefers,
apart from the 2 expressions:

x2 + y2 + z2 − t2, xδx+ yδy + zδz − tδt,

or the 4 expressions of like form deduced by arbitrary permutation of
the 3 points P , P ′, P ′′.17

Here Poincaré formed three quadruplets representing the differential displacement
of two point masses, with respect to a certain four-dimensional vector space, later
called a pseudo-Euclidean space.18 By introducing such a 4-space, Poincaré sim-
plified the task of identifying quantities invariant with respect to the Lorentz trans-
formations, the line interval of the new space being formally identical to that of
a Euclidean 4-space. He treated his three points P , P ′, and P ′′ as 4-vectors, the
scalar products of which are invariant, just as in Euclidean space. In fact, Poincaré
did not employ vector terminology or notation in his study of gravitation, but pro-
vided formal definitions of certain objects later called 4-vectors.
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Poincaré’s habit, and that of the overwhelming majority of his French col-
leagues in mathematical physics well into the 1920s, was to express ordinary
vector quantities in Cartesian coordinate notation, and to forgo notational short-
cuts when differentiating, writing these operations out in full.19 Although he did
not exclude symbols such as ∆ or □ from his scientific papers and lectures, he
employed them parsimoniously.20 In line with this practice, Poincaré did little
to promote vector methods from his chair at the Sorbonne. In twenty volumes
of lectures on mathematical physics and celestial mechanics, there is not a sin-
gle propadeutic on quaternions or vector algebra.21 Poincaré deplored the “long
calculations rendered obscure by notational complexity” in W. Voigt’s molecular
theory of light, and seems to have been of the opinion that in general, new notation
only burdened the reader.22

The point of forming quadruplets was to obtain a set of Lorentz-invariants
corresponding to the ten variables entering into the right-hand side of the new
force law, representing the squared distance in space and time of the two bodies
and their velocities (ξ, η, ζ , ξ1, η1, ζ1). How did Poincaré obtain his invariants?
According to the method cited above, six invariants were to be found from the
distances between P , P ′, P ′′, and the origin, or from the scalar products of P ,
P ′, and P ′′. These six intermediate invariants were then to be combined to obtain
homogeneous invariants depending on the duration of propagation of gravitational
action and the velocities of the two point masses. Poincaré skipped over the in-
termediate step and produced the following four invariants, in terms of squared
distance, distance and velocity (twice), and the velocity product:

∑
x2 − t2,

t−
∑
xξ√

1−
∑
ξ2
,
t−
∑
xξ1√

1−
∑
ξ21
,

1−
∑
ξξ1√

(1−
∑
ξ2) (1−

∑
ξ21)

. (1)

The Lorentz-invariance and geometric significance of these quantities are readily
verified.23 These four invariants (1), the latter three of which were labeled A, B,
and C, formed the core of Poincaré’s constructive approach to the law of gravita-
tion. (For convenience, I refer to Poincaré’s four invariants (1) as his “kinematic”
invariants.)

Inspection of the signs of these invariants reveals an inconsistency, the reason
for which is apparent once the intermediate calculations have been performed.
Instead of constructing his four invariants out of scalar products, Poincaré intro-
duced an inversion forA,B, andC.24 This sign inconsistency had no consequence
on his search for a relativistic law of gravitation, although it affected his final re-
sult, and perplexed at least one of his readers, as I will show in § 3.

What Poincaré needed next for his force law was a Lorentz-invariant expres-
sion for the force itself. Up to this point, he had neither a velocity 4-vector nor a
force 4-vector definition on hand. Presumably, the search for Lorentz-invariant
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expressions of force led him to define these 4-vectors. Earlier in his memoir
(p. 135), Poincaré had determined the Lorentz transformations of force density,
but now he was interested in the Lorentz transformations of force at a point. The
transformations of force density:

X ′ = k(X + εT ), Y ′ = Y, Z ′ = Z, T ′ = k(T + εX), (2)

where k is the Lorentz factor, k = 1/
√
1− ε2, and ε designates frame veloc-

ity, led Poincaré to define a fourth component of force density, T , as the product
of the force density vector with velocity, T =

∑
Xξ.25 He gave the same def-

inition for the temporal component of force at a point: T1 =
∑
X1ξ.26 Next,

dividing force density by force at a point, Poincaré obtained the charge density
ρ. Ostensibly from the transformation for charge density, Poincaré singled out the
Lorentz-invariant factor:27

ρ

ρ′
=

1

k(1 + ξε)
=
δt

δt′
. (3)

The components of a 4-velocity vector followed from the foregoing definitions of
position and force density:

The Lorentz transformation . . . will act in the same way on ξ, η, ζ , 1
as on δx, δy, δz, δt, with the difference that these expressions will be
multiplied moreover by the same factor δt/δt′ = 1/k(1 + ξε).28

Concerning the latter definition, Poincaré observed a formal analogy between the
force and force density 4-vectors, on one hand, and the position and velocity 4-
vectors, on the other hand: these pairs of vectors transform in the same way,
except that one member is multiplied by 1/k(1 + ξε). While this analogy may
seem mathematically transparent, it merits notice, as it appears to have eluded
Poincaré at first.

With these four kinematic 4-vectors in hand, Poincaré defined a fifth quadru-
plet Q with components of force density (X, Y, Z, T

√
−1). Just as in the previous

case, the scalar products of his four quadruplets P , P ′, P ′′, and Q were to de-
liver four new Lorentz-invariants in terms of the force acting on the passive mass
(X1, Y1, Z1):29∑

X2
1 − T 2

1

1−
∑
ξ2

,

∑
X1x− T1t√
1−

∑
ξ2

,

∑
X1ξ1 − T1√

1−
∑
ξ2
√

1−
∑
ξ21
,

∑
X1ξ − T1

1−
∑
ξ2

.

(4)
The fourth invariant in (4) was always null by definition of T1, leaving only three
invariants, denoted M , N , and P . (In order to distinguish these invariants from
the kinematic invariants, I will refer to (4) as Poincaré’s “force” invariants.)
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Comparing the signs of the kinematic invariants (1) with those of the force
invariants (4), we see that Poincaré obtained consistent signs only for the latter
invariants. He must not have computed his force invariants in the same way as his
kinematic invariants, for reasons that remain obscure. It is not entirely unlikely
that in the course of his analysis of the transformations of velocity and force,
Poincaré realized that he could compute the force invariants directly from the
scalar products of four 4-vectors. Two facts, however, argue against this reading.
In the first place, Poincaré did not mention that his force invariants were the scalar
products of position, velocity and force 4-vectors. Secondly, he did not alter the
signs of his kinematic invariants to make them correspond to scalar products of
position and velocity 4-vectors.30 The fact that Poincaré’s kinematic invariants
differ from products of 4-position and 4-velocity vectors leads us to believe that
when forming these invariants he was not thinking in terms of 4-vectors.31

From this point on, Poincaré worked exclusively with arithmetic combinations
of three force invariants (M , N , P ) and four kinematic invariants (

∑
x2 − t2, A,

B, C) in order to come up with a relativistic law of gravitation. He had no further
use, in particular, for the four quadruplets he had identified in the process of con-
structing these same invariants (corresponding to modern 4-position, 4-velocity,
4-force-density and 4-force vectors), although in the end he expressed his laws of
gravitation in terms of 4-force components.

To find a law applicable to the general case of two bodies in relative motion,
Poincaré introduced constraints and approximations designed to reduce the com-
plexity of his seven invariants and recover the form of the Newtonian law in the
limit of slow motion (ξ1 ≪ 1). Poincaré naturally looked first to the velocity of
propagation of gravitation. He briefly considered an emission theory, where the
velocity of gravitation depends on the velocity of the source. Although the emis-
sion hypothesis was compatible with his invariants, Poincaré rejected this option
because it violated his initial injunction barring a hyperlight velocity of gravita-
tional propagation.32 That left him with a propagation velocity of gravitation less
than or equal to that of light, and to simplify his invariants Poincaré set it equal
to that of light in empty space, such that t = −

√∑
x2 = −r. This stipulation

reduced the total number of invariants from seven to six.
With the propagation velocity of gravitation decided, Poincaré proceeded to

construct a force law for point masses. He tried two approaches, the first of which
is the most general. The basic idea of both approaches is to neglect terms in
the square of velocity occurring in the invariants, and to compare the resulting
approximations with their Newtonian counterparts. In the Newtonian scheme, the
coordinates of the active mass point differ from those in the relativistic scheme
(cf. note 18); Poincaré took the former to be (x0 + x1, y0 + y1, z0 + z1) at the
instant of time t0, where the subscript 0 corresponds to the position of the passive
mass point, and the coordinates with subscript 1 are found by assuming uniform
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motion of the source:

x = x1 − ξ1r, y = y1 − η1r, z = z1 − ζ1r, r = r1 −
∑
xξ1. (5)

In the first approach, Poincaré made use of both the kinematic and force in-
variants. Substituting the values (5) into the kinematic invariants A, B, and C
from (1) and the force invariants M , N , and P from (4), neglecting terms in the
square of velocity, Poincaré obtained their sought-after Newtonian counterparts.
Replacing the force vector occurring in the transformed force invariants by New-
ton’s law (

∑
X1 = −1/r21), and rearranging, Poincaré obtained three quantities in

terms of distance and velocity.33 He then re-expressed these quantities in terms of
two of his original kinematic invariants, A and B, and equated the three resulting
kinematic invariants to their corresponding original force invariants (4). He now
had the solution in hand; three expressions relate his force invariants (containing
the force vector

∑
X1) to two of his kinematic invariants:

M =
1

B4
, N =

+A

B2
, P =

A−B

B3
. (6)

He noted that complementary terms could be entertained for the three relations
(6), provided that they were certain functions of his kinematic invariants A, B,
and C. Then without warning, he cut short his demonstration, remarking that the
gravitational force components would take on imaginary values:

The solution (6) appears at first to be the simplest, nonetheless, it may
not be adopted. In fact, since M , N , P are functions of X1, Y1, Z1,
and T1 = ΣX1ξ, the values of X1, Y1, Z1 can be drawn from these
three equations (6), but in certain cases these values would become
imaginary.34

The quoted remark seems to suggest that for selected values of the particle ve-
locities, the force turns out to be imaginary. However, the real difficulty springs
from the equation M = 1/B4, which allows for a repulsive force. The general
approach failed to deliver.35

The fact that Poincaré published the preceding derivation may be understood
in one of two ways. On the one hand, there is a psychological explanation:
Poincaré’s habit, much deplored by his peers, was to present his findings more
or less in the order in which he found them. The case at hand may be no different
from the others. On the other hand, Poincaré may have felt it worthwhile to show
that the general approach breaks down. From the latter point of view, Poincaré’s
result is a positive one.

For his second attack on the law of gravitation, Poincaré adopted a less general
approach. He knew where his first approach had become unsuitable, and conse-
quently, leaving aside his three force invariants, he fell back on the form of his
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basic force 4-vector, which he now wrote in terms of his kinematic invariants,
re-expressed in terms of r = −t, k0 = 1/

√
1− ξ2, and k1 = 1/

√
1− ξ21 .36 He

assumed the gravitational force on the passive mass (moving with velocity ξ, η,
ζ) to be a function of the distance separating the two mass points, the velocity of
the passive mass point, and the velocity of the source, with the form:

X1 = x
α

k0
+ ξβ + ξ1

k1
k0
γ,

Y1 = y
α

k0
+ ηβ + η1

k1
k0
γ,

Z1 = z
α

k0
+ ζβ + ζ1

k1
k0
γ,

T1 = −r α
k0

+ β +
k1
k0
γ,

(7)

where α, β, and γ denote functions of the kinematic invariants.37 By definition,
the component T1 is the scalar product of the ordinary force and the velocity of
the passive mass point, T1 =

∑
X1ξ, such that the three functions α, β, γ satisfy

the equation:
−Aα− β − Cγ = 0. (8)

Poincaré further assumed β = 0, thereby eliminating a term depending on the
velocity of the passive mass, and fixing the value of γ in terms of α. Applying
the same slow-motion approximation and translation (5) as in his initial approach,
Poincaré found X1 = αx1, and by comparison with Newton’s law, α reduces to
−1/r31. In terms of the kinematic invariants (1), this relation was expressed as
α = 1/B3, and the law of gravitation (7) took on the form:38

X1 =
x

k0B3
− ξ1

k1
k0

A

B3C
,

Y1 =
y

k0B3
− η1

k1
k0

A

B3C
,

Z1 =
z

k0B3
− ζ1

k1
k0

A

B3C
,

T1 = − r

k0B3
− k1
k0

A

B3C
.

(9)

Inspection of Poincaré’s gravitational force (9) reveals two components: one par-
allel to the position 4-vector between the passive mass and the retarded source,
and one parallel to the source 4-velocity. The law was not unique, Poincaré noted,
and it neglected possible terms in the velocity of the passive mass.

Poincaré underlined the open-ended nature of his solution by proposing a sec-
ond gravitational force law. Rearranging (9) and replacing the factor 1/B3 by
C/B3, such that the force depended linearly on the velocity of the passive mass,
Poincaré arrived at a second law of gravitation:39

X1 =
λ

B3
+
ην ′ − ζµ′

B3
,

Y1 =
µ

B3
+
ζλ′ − ξν ′

B3
,

Z1 =
ν

B3
+
ξµ′ − ηλ′

B3
,

(10)
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where

k1(x+ rξ1) = λ,

k1(η1z − ζ1y) = λ′,

k1(y + rη1) = µ,

k1(ζ1x− ξ1z) = µ′,

k1(z + rζ1) = ν,

k1(ξ1y − xη1) = ν ′.

Poincaré neglected to write down the expression for T1, probably because of its
complicated form. (For the sake of simplicity, I refer to (9) and (10) including
the latter’s neglected fourth component, as Poincaré’s first and second law.) The
unprimed triplet B−3(λ, µ, ν) supports what Poincaré termed a “vague analogy”
with the mechanical force on a charged particle due to an electric field, while the
primed triplet B−3(λ′, µ′, ν ′) supports an analogy to the mechanical force on a
charged particle due to a magnetic field. He identified the fields as follows:

Now λ, µ, ν, or
λ

B3
,
µ

B3
,
ν

B3
, is an electric field of sorts, while λ′, µ′,

ν ′, or rather
λ′

B3
,
µ′

B3
,
ν ′

B3
, is a magnetic field of sorts.40

While Poincaré wrote freely of a “gravity wave” (onde gravifique), he abstained
from speculating on the nature of the field referred to here. As one of the first
theorists (with FitzGerald and Lorentz) to have employed retarded potentials in
Maxwellian electrodynamics, Poincaré must have considered the possibility of in-
troducing a corresponding gravitational 4-potential.41 But as matters stood when
Poincaré submitted this paper for publication in July, 1905, he was not in a po-
sition to elaborate the physics of fields in four-dimensional terms, since he pos-
sessed neither a 4-potential nor a 6-vector.

Poincaré had realized the objective of formulating a Lorentz-invariant force
of gravitation. As we have seen, he surpassed this objective by identifying not
one but two such force laws. Designed to reduce to Newton’s law in the first
order of approximation in ξ1 (or particle velocity divided by the speed of light),
Poincaré’s laws could diverge from Newton’s only in second-order terms. The
argument satisfied Poincaré, who did not report any precise numerical results,
explaining that this would require further investigation. Instead, he noted that the
disagreement would be ten thousand times smaller than a first-order difference
stemming from the assumption of a propagation velocity of gravitation equal to
that of light, “ceteris non mutatis” (p. 175). His result contradicted Laplace, who
had predicted an observable first-order effect arising from just such an assumption.
At the very least, Poincaré had demonstrated that Laplace’s argument was not
compelling in the context of the new dynamics.42

On several occasions over the next seven years, Poincaré returned to the ques-
tion of gravitation and relativity, without ever comparing the predictions of his
laws with observation. During his 1906–1907 Sorbonne lectures, for example,
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when he developed a general formula for perihelion advance, Poincaré used a La-
grangian approach, rather than one or the other of his laws (Poincaré 1953, 238).
Student notes of this course indicate that he stopped short of a numerical evalua-
tion for the various electron models (perhaps leaving this as an exercise). How-
ever, Poincaré later provided the relevant numbers in a general review of electron
theory. Lorentz’s theory called for an extra 7" centennial advance by Mercury’s
perihelion, a figure slightly greater than the one for Abraham’s non-relativistic
electron theory.43 According to the best available data, Mercury’s anomalous per-
ihelial advance was 42", prompting Poincaré to remark that another explanation
would have to be found in order to account for the remaining seconds of arc. As-
tronomical observations, Poincaré concluded soberly, provided no arguments in
favor of the new electron dynamics.44

Poincaré capsulized the situation of his new theory in a fable in which Lorentz
plays the role of Ptolemy, and Poincaré that of an unknown astronomer appearing
sometime between Ptolemy and Copernicus. The unknown astronomer notices
that all the planets traverse either an epicycle or a deferent in the same lapse of
time, a regularity later captured in Kepler’s second law. The analogy to electron
dynamics turns on a regularity discovered by Poincaré in his study of gravitation:

If we were to admit the postulate of relativity, we would find the same
number in the law of gravitation and the laws of electromagnetism,
which would be the velocity of light; and we would find it again in all
the other forces of any origin whatsoever.45

This common propagation velocity of gravitational action, of electromagnetic
fields, and of any other force, could be understood in one of two ways:

Either everything in the universe would be of electromagnetic origin,
or this aspect–shared, as it were, by all physical phenomena–would
be a mere epiphenomenon, something due to our methods of mea-
surement.46

If the electromagnetic worldview were valid, all particle interactions would be
governed by Maxwell’s equations, featuring a constant propagation velocity. Oth-
erwise, the common propagation velocity of forces had to be a result of a mea-
surement convention. In relativity theory, as Poincaré went on to point out, the
measurement convention to adopt was one defining lengths as equal if and only
if spanned by a light signal in the same lapse of time, as this convention was
compatible with the Lorentz contraction. There was a choice to be made between
the electromagnetic worldview (as realized in the electron models of Abraham
and Bucherer-Langevin) and the postulate of relativity (as upheld by the Lorentz-
Poincaré electron theory). Although Poincaré favored the latter theory, he felt that
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its destiny was to be superseded, just as Ptolemaic astronomy was superseded by
Copernican heliocentrism.

The failure of his Lorentz-invariant law of gravitation to explain the anomalous
advance of Mercury’s perihelion probably fed Poincaré’s dissatisfaction with the
Lorentz-Poincaré theory in general, but what he found particularly troubling at the
time was something else altogether: the discovery of magneto-cathode rays. There
is no place in the Lorentz-Poincaré electron theory for rays that are both neutral
(as Paul Villard reported in June, 1904) and deflected by electric and magnetic
fields, which is probably why Poincaré felt the “entire theory” to be “endangered”
by magneto-cathode rays.47

Uncertainty over the empirical adequacy of the Lorentz-Poincaré electron the-
ory may explain why the Rendiconti memoir was Poincaré’s last in the field of
electron physics. But is it enough to explain his disinterest in the development
of a four-dimensional formalism? One year after the publication of his article on
electron dynamics, Poincaré commented:

A translation of our physics into the language of four-dimensional
geometry does in fact appear to be possible; the pursuit of this trans-
lation would entail great pain for limited profit, and I will just cite
Hertz’s mechanics, where we see something analogous. Meanwhile,
it seems that the translation would remain less simple than the text and
would always have the feel of a translation, and that three-dimensional
language seems the best suited to the description of our world, even if
one admits that this description may be carried out in another idiom.48

Poincaré clearly saw in his own work the outline of a four-dimensional formalism
for physics, yet he saw no future in its development, and this, entirely apart from
the question of the empirical adequacy of the Lorentz-Poincaré theory.

Why did Poincaré discount the value of a language tailor-made for relativity?
Three sources of disinterest in such a prospect spring to mind, the first of which
stems from his conventionalist philosophy of science. Poincaré recognized an
important role for notation in the exact sciences, as he famously remarked with
respect to Edmond Laguerre’s work on quadratic forms and Abelian functions that

in the mathematical sciences, having the right notation is philosoph-
ically as important as having the right classification in the life sci-
ences.49

More than likely, Poincaré was aware of the philosophical implications of a four-
dimensional notation for physics, although he had yet to make his views public.
But given his strong belief in the immanence of Euclidean geometry’s fitness for
physics, he must have considered the chances for success of such a language to be
vanishingly small.50
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A second source for Poincaré’s disinterest in four-dimensional formalism is
his practice of physics. As mentioned above, Poincaré dispensed with vectorial
systems (and most notational shortcuts); he even avoided writing “i” for

√
−1.

When considered in conjunction with his conventionalist belief in the suitability
of Euclidean geometry for physics, this conservative habit with respect to notation
makes Poincaré appear all the less likely to embrace a four-dimensional language
for physics.

The third possible source of discontent is Poincaré’s vexing experience with
invariants of pseudo-Euclidean 4-space. As shown above(p. 11), Poincaré’s first
approach to the construction of a law of gravitation ended unsatisfactorily, and the
failure of Poincaré’s intuition in this instance may well have colored his view of
the prospects for a four-dimensional physics.

An immediate consequence of Poincaré’s refusal to work out the form of
four-dimensional physics was that others could readily pick up where he left
off. Roberto Marcolongo (1862–1945), Professor of Mathematical Physics in
Messina, and a leading proponent of vectorial analysis, quickly discerned in Poin-
caré’s paper a potential for formal development. Marcolongo referred, like Poin-
caré, to a four-dimensional space with one imaginary axis, but defined the fourth
coordinate as the product of time t and the negative square root of −1 (i.e.,
−t

√
−1 instead of t

√
−1). After forming a 4-vector potential out of the ordi-

nary vector and scalar potentials, and defining a 4-current vector, he expressed
the Lorentz-covariance of the equations of electrodynamics in matrix form. No
other applications were forthcoming from Marcolongo, and a failure to produce
further 4-vector quantities and functions limited the scope of his contribution,
which went unnoticed outside of Italy.51 Nothing further on Poincaré’s method
appeared in print until April, 1908, when Hermann Minkowski’s paper on the
four-dimensional formalism and its application to the problem of gravitation ap-
peared in the Göttinger Nachrichten.

2 Hermann Minkowski’s spacetime laws of gravita-
tion

The young Hermann Minkowski, fifth child of an immigrant family of Russian
Jews, attended the Altstädtische Gymnasium in Königsberg (later Kaliningrad).
Shortly after graduation, Minkowski submitted an essay for the Paris Academy’s
1882 Grand Prize in Mathematical Sciences. His entry on quadratic forms shared
top honors with a submission by the seasoned British mathematician Henry J. S.
Smith, his senior by thirty-eight years.52 The young mathematician went on to
study with Heinrich Weber in Königsberg, and with Karl Weierstrass and Leopold
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Kronecker in Berlin. In the years following the prize competition, Minkowski be-
came acquainted with Poincaré’s writings on algebraic number theory and quadratic
forms, and in particular, with a paper in Crelle’s Journal containing some of the
results from Minkowski’s prize paper, still in press. To his friend David Hilbert
he confided the “angst and alarm” brought on by Poincaré’s entry into his field of
predilection; with his “swift and versatile” energy, Poincaré was bound to bring
the whole field to closure, or so it seemed to him at the time.53 From the earliest,
formative years of his scientific career, Minkowski found in Poincaré–his senior
by a decade–a daunting intellectual rival.

While Minkowski had discovered in Poincaré a rival, he was soon to find that
that the Frenchman could also be a teacher, from whom he could learn new an-
alytical skills and methods. Named Privatdozent in Bonn in 1887, Minkowski
contributed to the abstract journal Jahrbuch der Fortschritte der Mathematik, and
in 1892, took on the considerable task of summarizing the results of the paper
for which Poincaré was awarded the King Oscar II Prize (Minkowski 1893). The
mathematics Poincaré created in his prize paper (the study of homoclinic points in
particular) was highly innovative, and at the same time, difficult to follow. Among
those whom we know had trouble understanding certain points of Poincaré’s prize
memoir were Charles Hermite, Gustav Mittag-Leffler, and Karl Weierstrass, who
happened to constitute the prize committee.54 Minkowski, however, welcomed
the review as a learning opportunity, as he wrote to his friend and former teacher,
Adolf Hurwitz:

Poincaré’s prize paper is also among the works I have to report on for
the Fortschritte. I am quite fond of it. It is a fine opportunity for me
to get acquainted with problems I have not worried about too much
up to now, since I will naturally set a positive goal of making my case
well.55

In the 1890s, building on his investigations of the algebraic theory of quadratic
forms, Minkowski developed the geometric analog to this theory: geometrical
number theory. A high point of his efforts in this new field, and one which con-
tributed strongly to the establishment of his reputation in mathematical circles,
was the publication of Geometrie der Zahlen (1896). The same year, Minkowski
accepted a chair at Zurich Polytechnic, whereby he rejoined Hurwitz. Minkowski’s
lectures on mathematics and mathematical physics attracted a small following of
talented and ambitious students, including the future physicists Walter Ritz and
Albert Einstein, and the budding mathematicians Marcel Grossmann and Louis
Kollros.56

Minkowski’s lectures on mechanics in Zurich throw an interesting light on
his view of symbolic methods in physics at the close of the nineteenth century.
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The theory of quaternions, he noted in 1897, was used nowhere outside of Eng-
land, due to its “relatively abstract character and inherent difficulty.”57 Two of
its fundamental concepts, scalars and vectors, had nevertheless gained broad ap-
proval among physicists, Minkowski wrote, and had found “frequent application
especially in the theory of electricity.”58 Applications of quaternions to problems
of physics were advanced in Germany with the publication of Felix Klein and
Arnold Sommerfeld’s Theorie des Kreisels, a work referred to in Minkowski’s
lecture notes of 1898–1899.59 Minkowski admired Klein and Sommerfeld’s text,
expressing “great interest” in the latter to Sommerfeld, along with his approval
of the fundamental significance accorded to the concept of momentum. How-
ever, their text did not make the required reading list for Minkowski’s course in
mechanics.60

In 1899, at the request of Sommerfeld, who a year earlier had agreed to edit
the physics volumes of Felix Klein’s ambitious Encyclopedia of the Mathematical
Sciences including Applications (hereafter Encyklopädie), Minkowski agreed to
cover a topic in molecular physics he knew little about, but one perfectly suited
to his skills as an analyst: capillarity.61 The article that appeared seven years later
represented his second contribution to physics, after a short note on theoretical
hydrodynamics published in 1888, but which, ten years later, Minkowski claimed
no one had read–save the abstracter.62

When Minkowski accepted Göttingen’s newly-created third chair of pure math-
ematics in the fall of 1902, the pace of his research changed brusquely. The Uni-
versity of Göttingen at the turn of the last century was a magnet for talented young
mathematicians and physicists.63 Minkowski soon was immersed in the activities
of Göttingen’s Royal Society of Science, its mathematical society, and research
seminars. Several faculty members, including Max Abraham, Gustav Herglotz,
Eduard Riecke, Karl Schwarzschild, and Emil Wiechert, actively pursued theoret-
ical or experimental investigations motivated by the theory of electrons, and it was
not long before Minkowski, too, took up the theory. During the summer semester
of 1905 he co-led a seminar with Hilbert on electron theory, featuring reports by
Wiechert and Herglotz, and by Max Laue, who had just finished a doctoral thesis
under Max Planck’s supervision.64

Along with seminars on advanced topics in physics and analytical mechan-
ics, Göttingen featured a lively mathematical society, with weekly meetings de-
voted to presentations of work-in-progress and reports on scientific activity out-
side of Göttingen. The electron theory was a frequent topic of discussion in this
venue. For instance, the problem of gravitational attraction was first addressed
by Schwarzschild in December, 1904, in a report on Alexander Wilkens’ recent
paper on the compatibility of Lorentz’s electron theory with astronomical obser-
vations.65

A focal point of sorts for the mathematical society, Poincaré’s scientific output
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fascinated Göttingen scientists in general, and Minkowski in particular, as men-
tioned above.66 Minkowski reported to the mathematical society on Poincaré’s
publications on topology, automorphic functions, and capillarity, devoting three
talks in 1905–1906 to Poincaré’s 1888–1889 Sorbonne lectures on this subject
(Poincaré 1895). Others reporting on Poincaré’s work were Conrad Müller on
Poincaré’s St. Louis lecture on the current state and future of mathematical physics
(31 January, 1905), Hugo Broggi on probability (27 October, 1905), Ernst Zer-
melo on a boundary-value problem (12 December, 1905), Erhard Schmidt on the
theory of differential equations (19 December, 1905), Max Abraham on the Sor-
bonne lectures (6 February, 1906) and Paul Koebe on the uniformization theorem
(19 November, 1907). One gathers from this list that the Göttingen mathematical
society paid attention to Poincaré’s contributions to celestial mechanics, mathe-
matical physics, and pure mathematics, all subjects intersecting with the ongoing
research of its members. It also appears that no other member of the mathematical
society was quite as assiduous in this respect as Minkowski.67

When Einstein’s relativity paper appeared in late September, 1905, it drew
the attention of the Bonn experimentalist Walter Kaufmann, a former Göttingen
Privatdozent and friend of Max Abraham, but neither Abraham nor any of his col-
leagues rushed to report on the new ideas to the mathematical society.68 Poincaré’s
long memoir on the dynamics of the electron, published in January, 1906, fared
better, although nearly two years went by before Minkowski found an occasion to
comment on Poincaré’s gravitation theory, and to present his own related work-in-
progress. Minkowski’s typescript has been conserved, and is the source referred
to here.69

On the occasion of the 5 November, 1907, meeting of the mathematical soci-
ety, Minkowski began his review of Poincaré’s work by observing that gravitation
remained an “important question” in relativity theory, since it was not yet known
“how the law of gravitation is arranged for in the realm of the principle of relativ-
ity.”70 The basic problem of gravitation and relativity, in other words, had not been
solved by Poincaré. Eliding mention of Poincaré’s two laws, Minkowski recog-
nized in his work only one positive result: by considering gravitational attraction
as a “pure mathematical problem,” he said, Poincaré had found gravitation to prop-
agate with the speed of light, thereby overturning the standard Laplacian argument
to the contrary.71 Minkowski expressed dissatisfaction with Poincaré’s approach,
allowing that Poincaré’s was “only one of many” possible laws, a fact stemming
from its construction out of Lorentz-invariants. Consequently, Poincaré’s investi-
gation “had by no means a definitive character.”72 A critical remark of this sort
often introduces an alternative theory, but in this instance none was forthcoming,
and as I will show in what follows, there is ample reason to doubt that Minkowski
was actually in a position to improve on Poincaré’s investigation. Nonetheless, at
the end of his talk Minkowski set forth the possibility of elaborating his report.
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Minkowski’s lecture was not devoted entirely to Poincaré’s investigation of
Lorentz-invariant gravitation. The purpose of his lecture, according to the pub-
lished abstract, was to present a new form of the equations of electrodynamics
leading to a mathematical redescription of physical laws in four areas: electricity,
matter, mechanics, and gravitation.73 These laws were to be expressed in terms of
the differential equations used by Lorentz as the foundation of his successful the-
ory of electrons (1904a), but in a form taking greater advantage of the invariance
of the quadratic form x2 + y2 + z2 − c2t2. Physical laws, Minkowski stated, were
to be expressed with respect to a four-dimensional manifold, with coordinates x1,
x2, x3, x4, where units were chosen such that c = 1, the ordinary Cartesian co-
ordinates x, y, and z, went over into the first three, and the fourth was defined to
be an imaginary time coordinate, x4 = it. Implicitly, then, Minkowski took as
his starting point the four-dimensional vector space described in the last section
of Poincaré’s memoir on the dynamics of the electron.

Minkowski acknowledged, albeit obliquely, a certain continuity between Poin-
caré’s memoir and his own program to reform the laws of physics in four-dimen-
sional terms. By formulating the electromagnetic field equations in four-dimen-
sional notation, Minkowski said he was revealing a symmetry not realized by his
predecessors, not even by Poincaré himself (Walter 1999b, 98). While Poincaré
had not sought to modify the standard form of Maxwell’s equations, Minkowski
felt it was time for a change. The advantage of expressing Maxwell’s equations
in the new notation, Minkowski informed his Göttingen colleagues, was that they
were then “easier to grasp” (p. 11).

His reformulation naturally began in the electromagnetic domain, with an ex-
pression for the potentials. He formed a 4-vector potential denoted (ψ) by taking
the ordinary vector potential over for the first three components, and setting the
fourth component equal to the product of i and the scalar potential. The same
method was applied to obtain a four-component quantity for current density: for
the first three components, Minkowski took over the convection current density
vector, ϱw, or charge density times velocity, and defined the fourth component
to be the product of i and the charge density. Rewriting the potential and cur-
rent density vectors in this way, Minkowski imposed what is now known as the
Lorenz condition, Div(ψ) = 0, where Div is an extension of ordinary divergence.
This led him to the following expression, summarizing two of the four Maxwell
equations:

□ψj = −ϱj (j = 1, 2, 3, 4), (11)

where □ is the d’Alembertian, employed earlier by Poincaré (cf. note 20).
Of the formal innovations presented by Minkowski to the mathematical so-

ciety, the most remarkable was what he called a Traktor, a six-component entity
used to represent the electromagnetic field.74 He defined the six components via
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the 4-vector potential, using a two-index notation: ψjk = ∂ψk/∂xj − ∂ψj/∂xk,
noting the antisymmetry relation ψkj = −ψjk, and zeros along the diagonal
ψjj = 0. In this way, the Traktor components ψ14, ψ24, ψ34, ψ23, ψ31, ψ12 match
up with the field quantities −iEx, −iEy, −iEz, hx, hy, hz.75

The Traktor first found application when Minkowski turned to his second
topic: the four-dimensional view of matter. Ignoring the electron theories of mat-
ter of Lorentz and Joseph Larmor, Minkowski focused uniquely on the macro-
scopic electrodynamics of moving media.76 For this subject he introduced a “Po-
larisationstraktor”, (p), along with a 4-current-density, (σ), defined by the current
density vector i and the charge density ϱ: (σ) = ix, iy, iz, iϱ (typescript, p. 9).
Recalling (11), Minkowski wrote Maxwell’s source equations in covariant form:

∂p1j
∂x1

+
∂p2j
∂x2

+
∂p3j
∂x3

+
∂p4j
∂x4

= σj − ϱj. (12)

Minkowski’s relativistic extension of Maxwell’s theory was all the simpler in that
it elided the covariant expression of the constitutive equations, which involves 4-
velocity.77 While none of his formulas invoked 4-velocity, Minkowski acknowl-
edged that his theory required a “velocity vector of matter (w) = w1, w2, w3, w4”
(typescript, p. 10).

In order to express the “visible velocity of matter in any location,” Minkowski
needed a new vector as a function of the coordinates x, y, z, t (typescript, p. 7).
Had he understood Poincaré’s 4-velocity definition(above, p. 9), he undoubtedly
would have employed it at this point. Instead, following the same method of
generalization from three to four components successfully applied in the case of
4-vector potential, 4-current density, and 4-force density, Minkowski took over
the components of the velocity vector w for the spatial elements of the quadruplet
designated w1, w2, w3, w4:

wx, wy, wz, i
√
1−w2. (13)

There are two curious aspects to Minkowski’s definition. First of all, its
squared magnitude does not vanish when ordinary velocity vanishes; even a par-
ticle at rest with respect to a reference frame is described in that frame by a 4-
velocity vector of nonzero length. This is also true of Poincaré’s 4-velocity def-
inition, and is a feature of relativistic kinematics. Secondly, the components of
Minkowski’s quadruplet do not transform like the coordinates x1, x2, x3, x4, and
consequently lack what he knew to be an essential property of a 4-vector.78

The most likely source for Minkowski’s blunder is Poincaré’s paper. We re-
call that Poincaré’s derivation of his kinematic invariants ignored 4-vectors(above,
p. 8), and what is more, his paper features a misleading misprint, according to
which the spatial part of a 4-velocity vector is given to be the ordinary velocity
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vector.79 Other sources of error can easily be imagined, of course.80 It is strange
that Minkowski did not check the transformation properties of his 4-velocity defi-
nition, but given its provenance, he probably had no reason to doubt its soundness.

Minkowski’s mistake strongly suggests that at the time of his lecture, he did
not yet conceive of particle motion in terms of a worldline parameter. Such an
approach to particle motion would undoubtedly have spared Minkowski the er-
ror, since it renders trivial the definition of 4-velocity.81 As matters stood in
November, 1907, however, Minkowski could proceed no further with his project
of reformulation.82 The development of four-dimensional mechanics was hobbled
by Minkowski’s spare stock of 4-vectors even more than that of electrodynam-
ics. Although Minkowski defined a force-density 4-vector, the fourth compo-
nent of which he correctly identified as the energy equation, he did not go on
to define 4-force at a point.83 Once again, the definition of a force 4-vector at
a point would have been trivial, had Minkowski possessed a correct 4-velocity
definition. No more than a review of Planck’s recent investigation (Planck 1907),
Minkowski’s discussion of mechanics involved no 4-vectors at all. Likewise for
the subsequent section on gravitation, which reviewed Poincaré’s theory, as shown
above(p. 19).Without a valid 4-vector for velocity, Minkowski’s electrodynamics
of moving media was severely hobbled; without a point force 4-vector, his four-
dimensional mechanics and theory of gravitation could go nowhere.

The difficulty encountered by Minkowski in formulating a four-dimensional
approach to physics is surprising in light of the account he gave later of the back-
ground to his discovery of spacetime (Minkowski 1909). Minkowski presented
his spacetime view of relativity theory as a simple application of group methods
to the differential equations of classical mechanics. These equations were known
to be invariant with respect to uniform translations, just as the squared sum of
differentials dx2 + dy2 + dz2 was known to be invariant with respect to rotations
and translations of Cartesian axes in Euclidean 3-space, and yet no one, he said,
had thought of compounding the two corresponding transformation groups. When
this is done properly (by introducing a positive parameter c), one ends up with a
group Minkowski designated Gc, with respect to which the laws of physics are
covariant. (The group Gc is now known as the Poincaré group.) Presumably, the
four-dimensional approach appeared simple to Minkowski in hindsight, several
months after his struggle with 4-velocity.

In summary, while Minkowski formulated the idea of a four-dimensional lan-
guage for physics based on the form-invariance of the Maxwell equations under
the transformations of the Lorentz group, his development of this program beyond
electrodynamics was hindered by a misunderstanding of the four-dimensional
counterpart of an ordinary velocity vector. This was to be only a temporary obsta-
cle.

On 21 December, 1907, Minkowski presented to the Royal Society of Science
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in Göttingen a memoir entitled “The Basic Equations for Electromagnetic Pro-
cesses in Moving Bodies,” which I will refer to for brevity as the Grundgleichun-
gen.84 Minkowski’s memoir revisits in detail most of the topics introduced in his
5 November lecture to the mathematical society, but employs none of the jargon
of spaces, geometries, and manifolds. What it emphasizes instead–in agreement
with its title–is the achievement of the first theory of electrodynamics of mov-
ing bodies in full conformance to the principle of relativity. Also underlined is a
second result described as “very surprising”: the laws of mechanics follow from
the postulate of relativity and the law of energy conservation alone. On the four-
dimensional world and the new form of the equations of electrodynamics, both
topics headlined in his November lecture, Minkowski remained coy. Curiously,
the introduction mentions nothing about a new formalism, even though all but one
of fourteen sections introduce and employ new notation or calculation rules (not
counting the appendix).

The added emphasis on the laws of mechanics in Minkowski’s introduction,
on the other hand, reflects Minkowski’s recent discovery of correct definitions of
4-velocity and 4-force, along with geometric interpretations of these entities. It
was in the Grundgleichungen that Minkowski first employed the term “spacetime”
(Raumzeit).85 For example, he introduced 4-current density as the exemplar of a
“spacetime vector of the first kind” (§ 5), and used it to derive a velocity 4-vector.
Identifying ϱ1, ϱ2, ϱ3, ϱ4 with ϱwx, ϱwy, ϱwz, iϱ, just as he had done in his lecture
of 5 November, Minkowski wrote the transformation to a primed system moving
with uniform velocity q < 1:

ϱ′ = ϱ

(
−qwz + 1√

1− q2

)
, ϱ′w′

z′ = ϱ

(
wz − q√
1− q2

)
, ϱ′w′

x′ = ϱwx, ϱ
′w′

y′ = ϱwy.

(14)
Observing that this transformation did not alter the expression ϱ2(1 − w2),

Minkowski announced an “important remark” concerning the relation of the primed
to the unprimed velocity vector (§4). Dividing the 4-current density by the posi-
tive square root of the latter invariant, he obtained a valid definition of 4-velocity,

wx√
1−w2

,
wy√
1−w2

,
wz√
1−w2

,
i√

1−w2
, (15)

the squared magnitude of which is equal to −1. Minkowski seemed satisfied
with this definition, naming it the spacetime velocity vector (Raum-Zeit-Vektor
Geschwindigkeit).

The significance of the spacetime velocity vector, Minkowski observed, lies
in the relation it establishes between the coordinate differentials and matter in
motion, according to the expression√

−(dx21 + dx22 + dx23 + dx24) = dt
√

1−w2. (16)
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The Lorentz-invariance of the right-hand side of (16), signaled earlier by both
Poincaré and Planck, now described the relation of the sum of the squares of the
coordinate differentials to the components of 4-velocity.

The latter relation plays no direct role in Minkowski’s subsequent develop-
ment of the electrodynamics of moving media, and in this it is unlike the 4-velocity
definition. Rewriting the right-hand side of (16) as the ratio of the coordinate dif-
ferential dx4 to the temporal component of 4-velocity, w4, Minkowski defined the
spacetime integral of (16) as the “proper time” (Eigenzeit) pertaining to a particle
of matter. The introduction of proper time streamlined Minkowski’s 4-vector ex-
pressions, for instance, 4-velocity was now expressed in terms of the coordinate
differentials, the imaginary unit, and the differential of proper time, dτ :

dx

dτ
,

dy

dτ
,

dz

dτ
, i

dt

dτ
. (17)

Along with the notational simplification realized by the introduction of proper
time, Minkowski signaled a geometric interpretation of 4-velocity. Since proper
time is the parameter of a spacetime line (or as he later called it, a worldline), it
follows that 4-velocity is equal to the slope of a worldline at a given spacetime
point, much like ordinary three-velocity is described by the slope of a displace-
ment curve in classical kinematics. What Minkowski pointed out, in other words,
is that 4-velocity is tangent to a worldline at a given spacetime point (p. 108).

In order to develop his mechanics, Minkowski needed a workable definition
of mass. He adapted Einstein’s and Planck’s notion of rest mass to the arena
of spacetime by considering that a particle of matter sweeps out a hypertube in
spacetime. Conservation of particle mass m was then expressed as invariance of
the product of rest mass density with the volume slices of successive constant-time
hypersurfaces over the length of the particle’s worldline, such that dm/dτ = 0.
Minkowski did not consider the case of variable rest mass density, which arises,
for instance, in the case of heat exchange.

Minkowski’s decision to adopt a constant rest mass density is linked to his
view of the electrodynamics of moving media. Recall that he had introduced a six-
vector in his 5 November lecture to represent the field. The product of the field and
excitation six-vectors, he noted, leads to an interesting 4 by 4 matrix, combining
the Maxwell stresses, Poynting vector, and electromagnetic energy density. He did
not assign a name to this object, known later as the energy-momentum tensor, and
often viewed as one of Minkowski’s greatest achievements in electrodynamics.86

Of special interest to Minkowski was the fact that the 4-divergence of this matrix,
denoted lorS, is a 4-vector, K:87

K = lorS. (18)

This 4-divergence (18) was used to define the “ponderomotive” force density, or
generalized force per unit volume, neither mechanical nor non-mechanical in the
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pure sense of these terms. The 4-vector K is not normal, in general, to the veloc-
ity w of a given volume element, so to ensure that the ponderomotive force acts
orthogonally to w, Minkowski added a component containing a velocity term:

K + (wK̄)w. (19)

The parentheses in (19) indicate a scalar product, and K̄ stands for the transpose
of K. By defining the ponderomotive force density in this way, Minkowski ef-
fectively opted for an equation of motion in which 4-acceleration is normal to
4-velocity.88 It appears that Minkowski let this view of force and acceleration
guide his development of spacetime mechanics. In the latter domain, he formed a
4 by 4 matrix S in the force density and energy of an elastic media with the same
transformation properties as the energy-momentum tensor S of (18), and used the
4-divergence of this tensor to express the equations of motion of a volume element
of constant rest mass density ν (p. 106):

ν
dwh

dτ
= Kh + κwh (h = 1, 2, 3, 4). (20)

The factor κwas determined by the definition of 4-velocity to be equal to the scalar
product (Kw̄), much like the definition of ponderomotive force (19). In sum, it
may be supposed that the non-orthogonality with respect to a given volume ele-
ment of the 4-divergence of Minkowski’s asymmetric energy-momentum tensor
for moving media led Minkowski to introduce a velocity term to his definition
of ponderomotive force. This definition was then ported to spacetime mechanics,
where for the sake of consistency, Minkowski held rest mass density constant in
the equations of motion (20).

Minkowski’s stipulation of constant rest mass density was eventually chal-
lenged by Max Abraham (1909, 739) and others, for reasons that do not concern
us here. Despite its obvious drawbacks, it greatly simplified the tasks of outlining
the mechanics of spacetime and developing a theory of gravitation. For example,
it permitted him to define the equations of motion of a particle in terms of the prod-
uct of rest mass and 4-acceleration, where the latter is the derivative of 4-velocity
with respect to proper time. Since 4-velocity is orthogonal to 4-acceleration, for
constant proper mass it is also orthogonal to a 4-vector Minkowski called a “driv-
ing force” (bewegende Kraft, p. 108). Minkowski wrote four equations defining
this force:

m
d

dτ

dx

dτ
= Rx, m

d

dτ

dy

dτ
= Ry, m

d

dτ

dz

dτ
= Rz, m

d

dτ

dt

dτ
= Rt. (21)

The first three expressions differ from Planck’s equations of motion, in that Planck
defined force as change in momentum, instead of mass times acceleration. It was
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only a few months later that Minkowski explicitly defined four-momentum as
the product of 4-velocity with proper mass.89 By dividing Minkowski’s first three
equations by a Lorentz factor, one obtains Planck’s equations. Minkowski’s fourth
equation, Rt, formally dependent on the other three, expresses the law of en-
ergy conservation.90 From energy conservation and the relativity postulate alone,
Minkowski concluded, one may derive the equations of motion. This is the single
“surprising” result of his investigation of relativistic mechanics, referred to at the
outset of his paper (see above, p. 23).

If Minkowski found few surprises in spacetime mechanics, many of his read-
ers were taken aback by his four-dimensional approach. For example, the first
physicists to comment on his work, Albert Einstein and Jakob Laub, rewrote
Minkowski’s expressions in ordinary vector notation, sparing the reader the “siz-
able demands” (ziemlich große Anforderungen) of Minkowski’s mathematics (Ein-
stein 1908, 532). They did not specify the nature of the demands, but the ab-
stracter of their paper pointed to the “special knowledge of the calculation meth-
ods” required for assimilation of Minkowski’s equations.91 In other words, for
Minkowski’s readers, his novel matrix calculus was the principal technical obsta-
cle to overcome. Where Poincaré pushed rejection of formalism to an extreme,
Minkowski pulled in the other direction, introducing a formalism foreign to the
practice of physics. What motivated this brash move is unclear, and his choice
is all the more curious because he knowingly defied the German trend of vector
notation in electrodynamics.92 As mentioned above, Minkowski was ill-disposed
toward quaternions, although he admitted in print that they could be brought into
use for relativity instead of matrix calculus. He spoke here from experience,
as manuscript notes reveal that he used quaternions (in addition to Cartesian-
coordinate representation and ordinary vector analysis) to investigate the elec-
trodynamics of moving media.93 In the end, however, he felt that for his purposes
quaternions were “too limited and cumbersome” (zu eng und schwerfällig, p. 79).

As far as notation is concerned, Minkowski’s treatment of differential opera-
tions broke cleanly with then-current practice. It also broke with the precedent of
his 5 November lecture, where he had introduced, albeit parsimoniously, both □
and Div (see above, 11, p. 20).For the Grundgleichungen he adopted a different
approach, extending the ∇ to four dimensions, and labeling the resulting operator
lor, already encountered above in (18). The name is short for Lorentz, and the
effect is the operation:

∣∣∂/∂x1, ∂/∂x2, ∂/∂x3, ∂/∂x4
∣∣. When applied to a

6-vector, lor results in a 4-vector, in what Minkowski described as an appropriate
translation of the matrix product rule (p. 89); it also mimics the effect of the ordi-
nary ∇. Transforming as a 4-vector, lor is liberally employed in the second part
of the Grundgleichungen, to the exclusion of any and all particular 4-vector func-
tions.94 The use of lor made for a presentation of electrodynamics elegant in the
extreme, at the expense of legibility for German physicists more used to thinking

26



in terms of gradients, divergences, and curls (or rotations).
Minkowski’s equations of electrodynamics departed radically in form with

those of the old electrodynamics, shocking the thought patterns of physicists, and
creating a phenomenon of rejection that took several years–and a new formalism–
to overcome.95 Why did Minkowski break with this tradition? Did he feel that the
new physics of spacetime required a clean break with nineteenth-century practice?
Perhaps, but he must have recognized that the old methods would prove resistant
to change. His own subsequent practice shows as much: after writing the Grund-
gleichungen Minkowski did not bother with lor during his private explorations of
the formal side of electrodynamics, preferring the coordinate method.96

He also relied largely–but not exclusively–on a Cartesian-coordinate approach
during his preliminary investigations of the subjects treated in the Grundgleichun-
gen. His surviving research notes, made up almost entirely of symbolic calcula-
tions, shed an interesting light on Minkowski’s path to both a theory of the elec-
trodynamics of moving media, and a theory of gravitation, or more generally to
his process of discovery. Notably, where the subjects of mechanics and gravi-
tation are relegated to the appendix of the Grundgleichungen, these notes show
that Minkowski pursued questions of electrodynamics and gravitation in parallel,
switching from one topic to the other three times in the course of 163 carefully
numbered pages. At least fifteen of these pages are specifically concerned with
gravitation; the notes are undated, but those concerning gravitation are certainly
posterior to the typescript of the 5 November lecture, because unlike the latter,
they feature valid definitions of 4-velocity and 4-force.

Minkowski’s attempt to capture gravitational action in terms of a 4-scalar po-
tential is of particular interest. We recall that Minkowski had expressed Maxwell’s
equations in terms of a 4-vector potential (11) during his lecture of 5 November,
and on this basis, it was natural for him to investigate the possibility of repre-
senting gravitational force on a point mass in a fashion analogous to that of the
force on a point charge moving in an electromagnetic field. In his scratch notes,
Minkowski defined a 4-scalar potential Φ, in terms of which he initially devised
the law of motion:

d

dτ

1√
1− v2

− ∂Φ

∂t
= 0,

d

dτ

−x′√
1− v2

− ∂Φ

∂x
= 0,

d

dτ

−y′√
1− v2

− ∂Φ

∂y
= 0,

d

dτ

−z′√
1− v2

− ∂Φ

∂z
= 0,

(22)

where constants are neglected, τ denotes proper time, and primes indicate differ-
entiation with respect to coordinate time t (i.e., x′ = dx/dt).97 This generalization
of the Newtonian potential to a 4-scalar potential appears to be one of the first
paths explored by Minkowski in his study of gravitation, but his investigation is
inconclusive. In particular, there is no indication in these notes of a recognition
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on Minkowski’s part that a four-scalar potential conflicts with the postulates of in-
variant rest mass and light velocity.98 Nor is there any evidence that he considered
suspending either one of these postulates.

Likewise, in the Grundgleichungen there is no question of adopting either a
variable mass density or a gravitational 4-potential. Once he had established the
foundations of spacetime mechanics, Minkowski took up the case of gravitational
attraction. The problem choice is significant, in that the same question had been
treated at length by Poincaré (although not to Minkowski’s satisfaction, as men-
tioned above, p. 19).Implicitly, Minkowski encouraged readers to compare meth-
ods and results. Explicitly, proceeding in what he described (in a footnote) as a
“wholly different way” from Poincaré, Minkowski said he wanted to make “plau-
sible” the inclusion of gravitation in the scheme of relativistic mechanics (p. 109).
It will become clear in what follows that his project was more ambitious than the
modest elaboration of a plausibility argument, as it was designed to validate his
spacetime mechanics.

The point of departure for Minkowski’s theory of gravitation was quite dif-
ferent from that of Poincaré, because the latter’s results were integrated into the
former’s formalism. For example, where Poincaré initially assumed a finite prop-
agation velocity of gravitation no greater than that of light, only to opt in the end
for a velocity equal to that of light, Minkowski assumed implicitly from the outset
that this velocity was equal to that of light. Similarly, Poincaré initially supposed
the gravitational force to be Lorentz covariant, only to opt in the end for an analog
of the Lorentz force, where Minkowski required implicitly from the outset that all
forces transform like the Lorentz force.

Combining geometric and symbolic arguments, Minkowski’s exposition of his
theory of gravitation introduces a new geometric object, the three-dimensional
“ray form” (Strahlgebilde) of a given spacetime point, known today as a light hy-
percone (or lightcone). For a fixed spacetime point B∗ = (x∗, y∗, z∗, t∗), the
lightcone of B∗ is defined by the sets of spacetime points B = (x, y, z, t) satisfy-
ing the equation

(x− x∗)2 + (y − y∗)2 + (z − z∗)2 = (t− t∗)2, t− t∗ ≧ 0. (23)

For all the spacetime points B of this lightcone, B∗ is what Minkowski called B’s
lightpoint. Any worldline intersects the lightcone in one spacetime point only,
Minkowski observed, such that for any spacetime point B on a worldline there
exists one and only one lightpoint B∗. Minkowski remarked in a later lecture that
the lightcone divides four-dimensional space into three regions: timelike, space-
like and lightlike.99

Using this novel insight to the structure of four-dimensional space, in com-
bination with the 4-vector notation set up in earlier in his memoir, Minkowski
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Figure 1: Minkowski’s geometry of gravitation, with source in arbitrary motion.

presented and applied his law of gravitational attraction in two highly condensed
pages. Minkowski’s geometric argument employs non-Euclidean relations that
were unfamiliar to physicists, yet he provided no diagrams. Visually-intuitive ar-
guments had fallen into disfavor with mathematicians by this time, with the rise of
the axiomatic approach to geometry favored by David Hilbert (Rowe 1997), yet
Minkowski never renounced the use of figures in geometry; he employed them in
earlier works on number geometry, and went on to publish spacetime diagrams in
the sequel to the Grundgleichungen.100 For the purposes of my reconstruction, I
refer to a spacetime diagram (Figure 1) of the sort Minkowski employed in the
sequel (reproduced in Figure 3).101

On the assumption that the force of gravitation is a 4-vector normal to the 4-
velocity of the passive mass m, Minkowski derived his law of attraction in the
following way. The trajectories of two particles of mass m and m∗ correspond
to two spacetime filaments F and F∗, respectively. Minkowski’s arguments refer
to worldlines he called central lines (Hauptlinien) of these filaments, which pass
through points on the successive constant-time hypersurfaces delimited by the
respective particle volumes. The central lines of the filaments F and F∗ are shown
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in Figure 1. An infinitesimal element of the central line of F is labeled BC, and
the two lightpoints corresponding to the endpoints B and C are labeled B∗ and
C∗ on the central line of F∗. From the origin of the rest frame O, a 4-vector
parallel to B∗C∗ intersects at A′ the three-dimensional hypersurface defined by
the equation −x2 − y2 − z2 + t2 = 1. Finally, a spacelike 4-vector BD∗ extends
from B to a point D∗ on the worldline tangent to the central line of F∗ at B∗.

Referring to the latter configuration of seven spacetime points, two central
lines, a lightcone and a calibration hypersurface, Minkowski expressed the spatial
components of the driving force of gravitation exerted by m∗ on m at B,

mm∗

(
OA′

B∗D∗

)3

BD∗. (24)

Minkowski’s gravitational driving force is composed of the latter 4-vector (24)
and a second 4-vector parallel to B∗C∗ at B, such that the driving force is al-
ways orthogonal to the 4-velocity of the passive mass m at B. (For reasons of
commodity, I will refer to this law of force as Minkowski’s first law.)

The form of Minkowski’s first law of gravitation is comparable to that of his
ponderomotive force for moving media (19), in that the driving force has two
components, only one of which depends on the motion of the test particle. In the
gravitational case, however, Minkowski did not write out the 4-vector components
in terms of matrix products. Instead, he relied on spacetime geometry and the
definition of a 4-vector. The only way physicists could understand (24) was by
reformulating it in terms of ordinary vectors referring to a conveniently chosen
inertial frame, and even then, they could not rely on Minkowski’s description
alone, as it is incomplete.102

Even without spacetime diagrams or a transcription into ordinary vector nota-
tion, the formal analogy of (24) to Newton’s law is readily apparent, and this is
probably why Minkowski wrote it this way. In doing so, however, he passed up an
opportunity to employ the new matrix machinery at his disposal. Had he seized
this opportunity, he would have gained a simple, self-contained, coordinate-free
expression of the law of gravitation, and provided readers with a more elaborate
example of his calculus in action, but the latter desiderata must not have been
among his primary objectives.103

Minkowski was not yet finished with his law of gravitation. Unlike Poincaré,
after writing his law of gravitation, Minkowski went on to apply it to the particular
case of uniform rectilinear motion of the source m∗. He considered the latter
in a comoving frame, in which the temporal axis is chosen to coincide with the
tangent to the central line of F∗ at B∗ (cf. the situation described in note 102).
Referring to the reconstructed spacetime diagram in Figure 2, the temporal axis
is represented by a vertical line F∗, such that the origin is established in a frame
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Figure 2: Minkowski’s geometry of gravitation, with source in uniform motion.

comoving with m∗. To the retarded position of m∗, denoted B∗, Minkowski
assigned the coordinates (0, 0, 0, τ∗), and to the position B of the passive mass m
he assigned the coordinates (x, y, z, t). The geometry of this configuration fixes
the location of D∗ at (0, 0, 0, t), from which the 4-vectors BD∗ = (−x, −y,
−z, 0) and B∗D∗ = (0, 0, 0, i(t − τ∗)) are determined. In this case, Minkowski
pointed out, (23) reduces to:

x2 + y2 + z2 = (t− τ∗)2. (25)

Substituting the above values of BD∗ and B∗D∗ into Minkowski’s formula (24),
the spatial components of the 4-acceleration of the passive mass m at B due to the
active mass m∗ at B∗ turn out to be:104

d2x

dτ 2
= − m∗x

(t− τ∗)3
,

d2y

dτ 2
= − m∗y

(t− τ∗)3
,

d2z

dτ 2
= − m∗z

(t− τ∗)3
. (26)

From (26) and (25), the corresponding temporal component at B may be deter-
mined:105

d2t

dτ 2
= − m∗

(t− τ∗)2
d(t− τ∗)

dt
. (27)

Inspecting (26), it appears that the only difference between these acceleration
components and those corresponding to Newtonian attraction is a replacement
in the latter of coordinate time t by proper time τ .106
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The formal similarity of (26) to the Newtonian law of motion under a central
force probably suggested to Minkowski that his law induces Keplerian trajecto-
ries. With the knowledge gained from (26), to the effect that the only difference
between classical and relativistic trajectories is that arising from the substitution
of proper time for coordinate time, Minkowski demonstrated the compatibility of
his relativistic law of gravitation with observation using only Kepler’s equation
and the definition of 4-velocity.

Writing Kepler’s equation in terms of proper time yields:

nτ = E − e sinE, (28)

where nτ denotes the mean anomaly, e the eccentricity, and E the eccentric
anomaly. Minkowski referred to (28) and to the norm of a 4-velocity vector:(

dx

dτ

)2

+

(
dy

dτ

)2

+

(
dz

dτ

)2

=

(
dt

dτ

)2

− 1, (29)

in order to determine the difference between the mean anomaly in coordinate time
nt and the mean anomaly in proper time nτ . From (29), Minkowski deduced:107

(
dt

dτ

)2

− 1 =
m∗

ac2
1 + e cosE

1− e cosE
. (30)

Solving (30) for the coordinate time dt, expanding to terms in c−2, and multiplying
by n led Minkowski to the expression:

ndt = ndτ

(
1 +

1

2

m∗

ac2
1 + e cosE

1− e cosE

)
. (31)

Recalling (28), Minkowski managed to express the difference between the mean
anomaly in coordinate time and proper time:108

nt+ const. =
(
1 +

1

2

m∗

ac2

)
nτ +

m∗

ac2
e sinE. (32)

Evaluating the relativistic factorm∗/ac2 for solar mass and the Earth’s semi-major
axis to be 10−8, Minkowski found the deviation from Newtonian orbits to be neg-
ligible in the solar system. On this basis, he concluded that

a decision against such a law and the proposed modified mechanics in
favor of the Newtonian law of attraction with Newtonian mechanics
would not be deducible from astronomical observations.109
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According to the quoted remark, there was more at stake here for Minkowski
than just the empirical adequacy of his law of gravitational attraction, as his claim
is for parity between Newton’s law and classical mechanics, on one hand, and
the system composed of the law of gravitation and spacetime mechanics on the
other hand. This new system, Minkowski claimed, was verified by astronomical
observations at least as well as the classical system formed by the Newtonian law
of attraction and Newtonian mechanics.

Instead of comparing his law with one or the other of Poincaré’s laws, Minkow-
ski noted a difference in method, as mentioned above. In light of Minkowski’s em-
phasis on the methodological difference with Poincaré, and the hybrid geometric-
symbolic nature of Minkowski’s exposition, it is clear that the point of reex-
amining the problem of relativity and gravitation in the Grundgleichungen was
not simply to make plausible the inclusion of gravitation in a relativistic frame-
work. Rather, since gravitational attraction was the only example Minkowski
provided of his formalism in action, his line of argument served to validate his
four-dimensional calculus, over and above the requirements of plausibility.

From the latter point of view, Minkowski had grounds for satisfaction, al-
though one imagines that he would have preferred to find that his law diverged
from Newton’s law just enough to account for the observed anomalies. It stands
to reason that if Minkowski had been fully satisfied with his first law, he would
not have proposed a second law in his next paper–which turned out to be the last
he would finish for publication. The latter article developed out of a well-known
lecture entitled “Space and Time” (Raum und Zeit), delivered in Cologne on 21
September, 1908, to the mathematics section of the German Association of Sci-
entists and Physicians in its annual meeting (Walter 1999a, 49).

In the final section of his Cologne lecture, Minkowski took up the Lorentz-
Poincaré theory, and showed how to determine the field due to a point charge in
arbitrary motion. On this occasion, just as in his earlier discussion of gravitation in
the Grundgleichungen, Minkowski referred to a spacetime diagram, but this time
he provided the diagram (Figure 3). Identifying the 4-vector potential components
for the source charge on this diagram, Minkowski remarked that the Liénard-
Wiechert law was a consequence of just these geometric relations.110

Minkowski then described the driving force between two point charges. Adopt-
ing dot notation for differentiation with respect to proper time, he wrote the driv-
ing force exerted on an electron of charge e1 at point P1 by an electron of charge
e:

−ee1
(
ṫ1 −

ẋ1
c

)
K, (33)

where ṫ1 and ẋ1 are 4-velocity components of the test charge e1 and K is a certain
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Figure 3: Minkowski’s spacetime diagram of particle interaction (Minkowski
1909, 86).
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4-vector. This was the first such description of the electrodynamic driving force
due to a 4-vector potential, the simplicity of which, Minkowski claimed, compared
favorably with the earlier formulations of Schwarzschild and Lorentz.111

In the same celebratory tone, Minkowski finished his article with a discussion
of gravitational attraction. The “reformed mechanics”, he claimed, dissolved the
disturbing disharmonies between Newtonian mechanics and electrodynamics. In
order to provide an example of this dissolution, he asked how the Newtonian law
of attraction would sit with his principle of relativity. Minkowski continued:

I will assume that if two point masses m, m1 describe worldlines, a
driving force vector is exerted by m on m1, exactly like the one in the
expression just given for the case of electrons, except that instead of
−ee1, we must now put in +mm1.

Applying the substitution suggested by Minkowski to (33), we obtain:

mm1

(
ṫ1 −

ẋ1
c

)
K, (34)

where the coefficients m and m1 refer to proper masses. Minkowski’s new law
of gravitation (34) fully expresses the driving force, unlike the formula (24) of
his first law, which describes only one component. In addition, the 4-vectors are
immediately identifiable from the notation alone. (In order to distinguish the law
given in the Grundgleichungen from that of the Cologne lecture (34), I will call
(34) Minkowski’s second law.)

Since (33) was obtained from Lorentz-Poincaré theory via a 4-vector potential,
the law of gravitation (34) ostensibly implied a 4-vector potential as well; in other
words, following the example set by Poincaré’s second law (10), Minkowski ap-
pealed in turn to a Maxwellian theory of gravitation similar to those of Heaviside,
Lorentz, and Gans.112 Although Minkowski made no effort to attach his law to
these field theories, it was understood by Sommerfeld to be a formal consequence
of just such a theory, as I will show in the next section.

What were the numerical consequences of this new law? Minkowski spared
the reader the details, noting only that in the case of uniform motion of the source,
the only divergence from a Keplerian orbit would stem from the replacement of
coordinate time by proper time. He indicated that the numbers for this case had
been worked out earlier, and his conclusion with respect to this new law was
naturally the same: combined with the new mechanics, it was supported by as-
tronomical observations to the same extent as the Newtonian law combined with
classical mechanics.

Curiously enough, Minkowski offered no explanation of the need for a second
law of attraction. Furthermore, by proposing two laws instead of one, Minkowski
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tacitly acknowledged defeat; despite his criticism of Poincaré’s approach (see
above, p. 19), he could hardly claim to have solved unambiguously the problem
of gravitation. It may also seem strange that Minkowski discarded the differences
between his new law (34) and the one he had proposed earlier.113

Minkowski revealed neither the motivation behind a second law of gravita-
tion, nor why he neglected the differences between his two laws, but there is a
straightforward way of explaining both of these mysteries. First, we recall the cir-
cumstances of his Cologne lecture, the final section of which Minkowski devoted
to the theme of restoring unity to physics. What he wanted to stress on this occa-
sion was that mechanics and electrodynamics harmonized in his four-dimensional
scheme of things:

In the mechanics reformed according to the world postulate, the dis-
turbing disharmonies between Newtonian mechanics and modern elec-
trodynamics fall out on their own.114

To support this view, Minkowski had to show that his reformed mechanics was
a synthesis of classical mechanics and electrodynamics. A Maxwellian theory of
gravitation fit the bill quite well, and consequently, Minkowski brought out his
second law of gravitation (34). Clearly, this was not the time to point out the
differences between his two laws. On the contrary, it was the perfect occasion
to observe that a law of gravitation derived from a 4-vector potential formally
identical to that of electrodynamics was observationally indistinguishable from
Newton’s law. Naturally, Minkowski seized this opportunity.

Sadly, Minkowski did not live long enough to develop his ideas on gravitation
and electrodynamics; he died on 12 January, 1909, a few days after undergoing
an operation for appendicitis. At the time, no objections to a field theory of grav-
itation analogous to Maxwell’s electromagnetic theory were known, apart from
Maxwell’s own sticking-points(see above, p. 6).However, additional objections to
this approach were raised by Max Abraham in 1912, after which the Maxwellian
approach withered on the vine, as Gustav Mie and others pursued unified theories
of electromagnetism and gravitation.115

Minkowski’s first law of gravitation fared no better than his second law, but
the four-dimensional language in which his two laws were couched had a bright
future. The first one to use Minkowski’s formal ideas to advantage was Sommer-
feld, as we will see next.
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3 Arnold Sommerfeld’s hyper-Minkowskian laws of
gravitation

Neither Poincaré’s nor Minkowski’s work on gravitation and relativity drew com-
ment until 25 October, 1910, when the second installment of Arnold Sommer-
feld’s vectorial version of Minkowski’s calculus, entitled “Four-dimensional vec-
tor analysis” (Vierdimensionale Vektoranalysis), appeared in the Annalen der Phy-
sik (Sommerfeld 1910b). Sommerfeld’s contribution differs from those of Poincaré
and Minkowski in that it is openly concerned with the presentation of a new for-
malism, much as its title indicates. In this section, I discuss Sommerfeld’s inter-
est in vectors, the salient aspects of his 4-vector formalism, and his portrayal of
Poincaré’s and Minkowski’s laws of gravitation.

Sommerfeld displayed a lively interest in vectors, beginning with his editor-
ship of the physics volume of Klein’s six-volume Encyklopädie in the summer of
1898.116 He imposed a certain style of vector notation on his contributing authors,
including typeface, terminology, symbolic representation of operations, units and
dimensions, and the choice of symbols for physical quantities. Articles 12 to 14
of the physics volume appeared in 1904, and were the first to implement the no-
tation scheme backed by Sommerfeld, laid out the same year in the Physikalische
Zeitschrift.117 While Sommerfeld belonged to the Vector Commission formed at
Felix Klein’s behest in 1902, it was clear to him as early as 1901 that the article
on Maxwell’s theory (commissioned to Lorentz) would serve as a “general direc-
tive” for future work in electrodynamics.118 His intuition turned out to be correct:
the principal “vector” of influence was Lorentz’s Article 13 (Lorentz 1904b), fea-
turing sections on vector notation and algebra, which set a de facto standard for
vector approaches to electrodynamics.

As mentioned above(p. 16), only one effort to extend Poincaré’s four-dimen-
sional approach beyond the domain of gravitation was published prior to Minkow-
ski’s Grundgleichungen. By 1910, the outlook for relativity theory had changed
due to the authoritative support of Planck and Sommerfeld, the announcement of
experimental results favoring Lorentz’s electron theory, and the broad diffusion
(in 1909) of Minkowski’s Cologne lecture. Dozens of physicists and mathemati-
cians began to take an interest in relativity, resulting in a leap in relativist publica-
tions.119

The principal promoter of Minkowskian relativity, Sommerfeld must have felt
by 1910 that it was the right moment to introduce a four-dimensional formalism.
He was not alone in feeling this way, for three other formal approaches based
on Minkowski’s work appeared in 1910. Two of these were 4-vector systems,
similar in some respects to Sommerfeld’s, and worked out by Max Abraham and
the American physical chemist Gilbert Newton Lewis, respectively. A third, non-
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vectorial approach was proposed by the Zagreb mathematician Vladimir Varičak.
Varičak’s was a real, four-dimensional, coordinate-based approach relying on hy-
perbolic geometry. Sommerfeld probably viewed this system as a potential rival
to his own approach; although he did not mention Varičak, he wrote that a non-
Euclidean approach was possible but could not be recommended (Sommerfeld
1910a, 752, note 1). Of the three alternatives to Sommerfeld’s system, the non-
Euclidean style pursued by Varičak and others was the only one to obtain even a
modest following. An investigation of the reasons for the contemporary neglect of
these alternative four-dimensional approaches is beyond the purview of our study;
for what concerns us directly, none of these methods was applied to the problem
of gravitation.120

Sommerfeld’s paper, like those of Abraham, Lewis, and Varičak, emphasized
formalism, and in this it differed from the Grundgleichungen, as mentioned above.
Like the latter work, it focused attention on the problem of gravitation. Following
the example set by both Poincaré and Minkowski, Sommerfeld capped his two-
part Annalen paper with an application to gravitational attraction, which consisted
of a reformulation, comparison and commentary of their work in his own terms.
Not only was Sommerfeld’s comparison of Poincaré’s and Minkowski’s laws of
gravitation the first of its kind, it also proved to be the definitive analysis for his
generation.

Sommerfeld’s four-dimensional vector algebra and analysis offered no new
4-vector or 6-vector definitions, but it introduced a suite of 4-vector functions,
notation, and vocabulary. The most far-reaching modification with respect to
Minkowski’s calculus was the elimination of lor (above, p. 26), in favor of ex-
tended versions of ordinary vector functions. In Sommerfeld’s notational scheme,
the ordinary vector functions div, rot, and grad (used by Lorentz in his Encyk-
lopädie article on Maxwell’s theory) were replaced by 4-vector counterparts marked
by a leading capital letter: Div, Rot, and Grad. These three functions were joined
by a 4-vector divergence marked by German typeface, Div. Sommerfeld chose to
retain □ (cf. note 20), while noting the equivalence to his 4-vector functions: □ =
Div Grad. The principal advantage of the latter functions was that their meaning
was familiar to physicists. In the same vein, Sommerfeld supplanted Minkowski’s
unwieldy terminology of “spacetime vectors of the first and second type” (Raum-
Zeit-Vektoren Iter und IIter Art) with the more succinct “four-vector” (Vierervek-
tor) and “six-vector” (Sechservektor). The result was a compact and transparent
four-dimensional formalism differing as little as possible from the ordinary vector
algebra employed in the physics volume of the Encyklopädie.121

To show how his formalism performed in action, Sommerfeld first took up the
geometric interpretation and calculation of the electrodynamic 4-vector potential
and 4-force. In the new notation, Sommerfeld wrote the electrodynamic 4-force K
between two point charges e and e0 in terms of three components in the direction
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of the lightlike 4-vector R, the source 4-velocity B, and the 4-acceleration Ḃ:

4πKR =
ee0

c(RB)2

(
c2 − (RḂ)

(RB)
(B0B) + (B0Ḃ)

)
R,

4πKB =
−ee0
c(RB)2

c2 − (RḂ)

(RB)
(B0R)B,

4πKḂ =
−ee0
c(RB)2

c2 − (RḂ)

(RB)
(B0R)Ḃ,

(35)

where parentheses indicate scalar products. Sommerfeld was careful to note the
equivalence between (35) and what he called Minkowski’s “geometric rule” (33).

In the ninth and final section of his paper, Sommerfeld took up the law of
electrostatics and the classical law of gravitation. The former was naturally con-
sidered to be a special case of (35), with two point charges relatively at rest. The
same was true for the law of gravitation, as Sommerfeld noted that Minkowski had
proposed a formal variant of (33) as a law of gravitational attraction (what I call
Minkowski’s second law, (34)). Sommerfeld’s expression of the electrodynamic
4-force is unwieldy, but takes on a simpler form in case of uniform motion of
the source (Ḃ = 0). Neglecting the 4π factor, and substituting −mm0 for +ee0,
Sommerfeld expressed the corresponding version of Minkowski’s second law:

−mm0c
(B0B)R− (B0R)B

(RB)3
. (36)

The latter law is compact and self-contained, in that its interpretation depends
only on the definitions and rules of the algebraic formalism. In this sense, (36)
improves on the Minkowskian (34), even if it represents only a special case of the
latter law.

Once Sommerfeld had expressed Minkowski’s second law in his own terms,
he turned to Poincaré’s two laws. The transformation of Poincaré’s first law was
more laborious than the transformation of Minkowski’s second law. First of all,
Sommerfeld transcribed Poincaré’s first law (9) into his 4-vector notation, while
retaining the original designation of invariants. This step itself was not simple:
in order to cast Poincaré’s kinematic invariants as scalar products of 4-vectors,
Sommerfeld had to adjust the leading sign of (9), to obtain:

k0K

mm′ = − 1

B3C

(
CR− 1

c
AB

)
. (37)

Sommerfeld noted the “correction” of what he called an “obvious sign error” in
(9).122 The difference is due to Poincaré’s irregular derivation of the kinematic
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invariants (1), as mentioned above(p. 8), although from Sommerfeld’s remark it is
not clear that he saw it this way.

The transformation of Poincaré’s second law (10) was less straightforward.
It appears that instead of deriving a 4-vector expression as in the previous case,
Sommerfeld followed Poincaré’s lead by eliminating the Lorentz-invariant factor
C from the denominator on the right-hand side of the first law (37), which results
in the equation:

k0K

mm′ = − 1

B3

(
CR− 1

c
AB

)
. (38)

Sommerfeld expressed Poincaré’s kinematic invariants A, B, and C as scalar
products:

A = −1

c
(RB0), B = −1

c
(RB), C = − 1

c2
(B0B). (39)

He also replaced the mass term m′ in (37) and (38) by the product of rest mass
m0 and the Lorentz factor k0, i.e., m′ = m0k0. At this point, he could express
Poincaré’s two laws exclusively in terms of constants, scalars, and 4-vectors:

mm0c
3 (B0B)R− (B0R)B

(RB)3(B0B)
, (40)

−mm0c
(B0B)R− (B0R)B

(RB)3
(41)

In the latter form, Sommerfeld’s (approximate) version of Minkowski’s second
law (36) matches exactly his (exact) version of Poincaré’s second law (41). Som-
merfeld pointed out this equivalence, and noted again that the difference between
(40) and (41) amounted to a single factor, in the scalar product of 4-velocities:
C = −(B0B)/c2. (All six Lorentz-invariant laws of gravitation of Poincaré,
Minkowski, and Sommerfeld are presented in Table 1.) Sommerfeld summed up
his result by saying that when the acceleration of the active mass is neglected,
Minkowski’s special formulation of Newton’s law (34) is subsumed by Poincaré’s
indeterminate formulation. In other words, the approximate form of Minkowski’s
second law was captured by Poincaré’s remark that his first law (9) could be mul-
tiplied by an unlimited number of Lorentz-invariant quantities (within certain con-
straints).

The message of the basic equivalence of Poincaré’s pair of laws to Minkowski’s
pair echoes the latter’s argument in his Cologne lecture, to the effect that space-
time mechanics removed the disharmonies of classical mechanics and electrody-
namics (see above, p. 36).This message was reinforced by Sommerfeld’s graphical
representation of the 4-vector components of these laws in a spacetime diagram,
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Figure 4: Sommerfeld’s illustration of the two laws of gravitation (Sommerfeld
1910b, 687).

reproduced in Figure 4. The 4-vector relations in (40) and (41) are shown in the
figure; the worldline of the active mass m appears on the left-hand side of the di-
agram, and the line OL (which coincides with R) lies on the retrograde lightcone
from the origin O on the worldline of the passive mass m0. All three 4-vectors
in (40) and (41), R, B0, and B0 are represented in the diagram, along with an
angle ψ corresponding to the Lorentz-invariant C = cosψ distinguishing (40) and
(41).123

So far, Sommerfeld had dealt with three of the four laws of gravitation, leaving
out only Minkowski’s first law. Since Minkowski’s presentation of his first law
was a purely geometric affair, Sommerfeld had no choice but to reconstruct his
argument with reference to a spacetime diagram describing the components of
(24) in terms of the angle ψ and a fourth 4-vector, S. He showed the numerator in
(40) and (41) to be equal to the product (B0B)S, and expressed the denominator
of (41) in terms of the length R′ of the 4-vector R′ in Figure 4, to obtain the
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formula:
K = mm0 cosψ

S

R′3 , (42)

which he showed to be equivalent to (40). Eliminating the factor C = cosψ from
the latter equation, Sommerfeld obtained an expression for (41) in terms of S:

K =
mm0S

R′3 . (43)

The latter two driving force equations, (42) and (43), were thus rendered geomet-
rically by Sommerfeld, facilitating the comprehension of their respective vector-
symbolic expressions (40) and (41).

In general, the driving force of (42) is weaker, ceteris paribus, than that of
(43) due to the cosine in the former, but Sommerfeld did not develop these results
numerically, noting only that the four laws were equally valid from an empirical
standpoint.124 He noted that Poincaré’s analysis allowed for several other laws, but
that in all cases, one sticking-point remained: there was no answer to the question
of how to localize momentum in the gravitational field.

By rewriting Poincaré’s and Minkowski’s laws in his new 4-vector formalism,
Sommerfeld effectively rationalized their contributions for physicists. The goal of
his paper, announced at the outset, was to display the “remarkable simplification
of electrodynamic concepts and calculations” resulting from “Minkowski’s pro-
found spacetime conception.”125 Actually, Sommerfeld’s comparison of Poincaré’s
and Minkowski’s laws of gravitation was designed to show his formalism in an at-
tractive light. In realizing this comparison in his own formalism, Sommerfeld
smoothed out the idiosyncrasies of Poincaré’s method, inappropriately lending
him a 4-vector approach. He felt that Poincaré had “already employed 4-vectors”
(Sommerfeld 1910b, 685), although as shown in the first section, Poincaré’s use
of four-dimensional entities was tightly circumscribed by the objective of formu-
lating Lorentz-invariants. In Thomas Kuhn’s optical metaphor (Kuhn 1970, 112),
Sommerfeld read Poincaré’s theory through a Minkowskian lens; in other words,
he read it as a spacetime theory. For Sommerfeld, no less than for Minkowski,
the discussion of gravitation and relativity was modulated by the programmatic
objective of promoting a four-dimensional formalism. Satisfying this objective
without ignoring Poincaré’s work, however, meant rationalizing Poincaré’s con-
tribution.126

Sommerfeld’s reading of Minkowski’s second law contrasts with its muted
exposition in the original text above(p. 36), in that he gave it pride of place with
respect to the other three laws. This change in emphasis on Sommerfeld’s part
reflects his own research interests in electrodynamics, and his outlook on the fu-
ture direction of physics.127 But what originally motivated him to propose a 4-
dimensional formalism? The inevitability of a 4-dimensional vector algebra as
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a standard tool of the physicist was probably a foregone conclusion for him by
1910, such that the promotion of the ordinary vector notation used in the En-
cyklopädie obliged him to propose essentially the same notation for 4-vectors.
Sommerfeld referred modestly to his work as an “explanation of Minkowskian
ideas” (Sommerfeld 1910a, 749), but as he explained to his friend Willy Wien,
co-editor with Planck of the Annalen der Physik, Minkowski’s original 4-vector
scheme had evolved. “The geometrical systematics” Sommerfeld announced, “is
now hyper-Minkowskian.”128 In the same letter to Wien, Sommerfeld confessed
that his paper had required substantial effort, and he expressed doubt that it would
prove worthwhile. Sommerfeld displayed either pessimism or modesty here, but
in fact his effort was richly rewarded, as his streamlined four-dimensional algebra
and analysis quickly won both Einstein’s praise and the confidence of his contem-
poraries.129

Sommerfeld’s work was eagerly read by young theoretical physicists raised
in the heady atmosphere of German vectorial electrodynamics. One of the early
adepts of Sommerfeld’s formalism was Philipp Frank (1884–1966), who was then
a Privatdozent in Vienna. By way of introduction to his 1911 study of the Lorentz-
covariance of Maxwell’s equations, Frank described the new four-dimensional al-
gebra as a combination of “Sommerfeld’s intuitiveness with Minkowski’s mathe-
matical elegance” (Frank 1911, 600). He recognized, however, that of late, physi-
cists had been overloaded with outlandish symbolic systems and terminology, and
promised to stay within the boundaries of Sommerfeld’s system, at least as far as
this was possible.

Physicists were indeed inundated in 1910–1911 with a bewildering array of
new symbolic systems, including an ordinary vector algebra (Burali-Forti & Mar-
colongo 1910), and a quaternionic calculus (Conway 1911), in addition to the
hyperbolic-coordinate system and three 4-vector formalisms already mentioned.
By 1911, 4-vector and 6-vector operations featured prominently in the pages of
the Annalen der Physik. Out of the nine theoretical papers concerning relativity
theory published in the Annalen that year, five made use of a four-dimensional
approach to physics, either in terms of 4-vector operations, or by referring to
spacetime coordinates. Four out of five authors of “four-dimensional” papers
cited Minkowski’s or Sommerfeld’s work; the fifth referred to Max Laue’s new
relativity textbook (Laue 1911). This timely and well-written little book went far
in standardizing the terminology and notation of four-dimensional algebra, such
that by January of 1912, Max Abraham preferred the Sommerfeld-Laue notation
to his own for the exposition of his theory of gravitation (Abraham 1910, 1912a,
1912b).

While young theorists were quick to pick up on the Sommerfeld-Laue calcu-
lus, textbook writers did not follow the trend. Of the four textbooks to appear
on relativity in 1913–1914, only the second edition of Laue’s book (Laue 1913)
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employed this formalism. Ebenezer Cunningham presented a 4-dimensional ap-
proach based on Minkowski’s work, but explicitly rejected Sommerfeld’s “quasi-
geometrical language”, which conflicted with his own purely algebraic presenta-
tion (Cunningham 1914, 99). A third textbook by Ludwik Silberstein (1914), a
former student of Planck, gave preference to a quaternionic presentation, while
the fourth, by Max B. Weinstein (1913), opted for Cartesian coordinates. Curi-
ously enough, Weinstein dedicated his work to the memory of Minkowski. Ap-
parently disturbed by this profession of fidelity, Max Born, who had briefly served
as Minkowski’s assistant, deplored the form of Weinstein’s approach to relativity:

[Minkowski] put perhaps just as much value on his presentation as on
its content. For this reason, I do not believe that entrance to his con-
ceptual world is facilitated when it is overwhelmed by an enormous
surfeit of formulas.130

By this time, Born himself had dropped Minkowski’s formalism in favor of the
Sommerfeld-Laue approach, such that the target of his criticism was Weinstein’s
disregard for 4-dimensional methods in general, and not the neglect of Minkowski’s
matrix calculus.131 What Born was pointing out here was that it had become
highly impractical to study the theory of relativity without recourse to a 4-dimen-
sional formalism. This may explain why Laue’s was the only one of the four
textbooks on relativity to be reedited, reaching a sixth edition in 1955.

In summary, the language developed by Sommerfeld for the expression of the
laws of gravitation of Poincaré and Minkowski endured, while the laws them-
selves remained tentative at best. This much was clear as early as 1912, when Jun
Ishiwara reported from Japan on the state of relativity theory. This theory, Ishi-
wara felt, had shed no light on the problem of gravitation, with a single exception:
Minkowski and Sommerfeld’s “formal mathematical treatment” (Ishiwara 1912,
588). The trend from Poincaré to Sommerfeld was one of increasing reliance on
formal techniques catering to Lorentz-invariance; in the space of five years, the
physical content of the laws of gravitation remained stable, while their formal
garb evolved from Cartesian to hyper-Minkowskian.
aMass terms are neglected, such that the right-hand side of each equation is implicitly
multiplied by the product of the two masses. When both sides of the four equations are
multiplied by the factor k0, they express components of a 4-vector, k0(X1, Y1, Z1, iT1).
The constants k0 and k1 are defined as: k0 = 1/

√
1−

∑
ξ2 and k1 = 1/

√
1−

∑
ξ21 . A,

B, and C denote the last three Lorentz-invariants in (1): A = t−
∑

xξ√
1−

∑
ξ2

, B = t−
∑

xξ1√
1−

∑
ξ21

,

C = 1−
∑

ξξ1√
(1−

∑
ξ2)(1−

∑
ξ21)

, where
∑
ξ and

∑
ξ1 designate the ordinary velocities of the

passive and active mass points, with components ξ, η, ζ, and ξ1, η1, ζ1. The time t is set
equal to the negative distance between the passive mass point and the retarded position of
the active mass point, t = −

√∑
x2 = −r. Poincaré’s second law is shown in the bottom
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Table 1: Lorentz-invariant laws of gravitation, 1906–1910

Poincaré (1906)a Minkowski (1908)b Sommerfeld (1910)c

X1 =
x

k0B3
− ξ1

k1
k0

A

B3C

Y1 =
y

k0B3
− η1

k1
k0

A

B3C

Z1 =
z

k0B3
− ζ1

k1
k0

A

B3C

T1 = − r

k0B3
− k1
k0

A

B3C

mm∗

(
OA′

B∗D∗

)3

BD∗ mm0c
3 (B0B)R− (B0R)B

(RB)3(B0B)

X1 =
λ

B3
− ην ′ − ζµ′

B3

Y1 =
µ

B3
− ζλ′ − ξν ′

B3

Z1 =
ν

B3
− ξµ′ − ηλ′

B3

mm1

(
ṫ1 −

ẋ1
c

)
K −mm0c

(B0B)R− (B0R)B

(RB)3

row; he neglected to write the fourth component T1, determined from the first three by the
orthogonality condition T1 =

∑
X1ξ. The new variables in the bottom row are:

λ = k1(x+ rξ1), µ = k1(y + rη1), ν = k1(z + rζ1),

λ′ = k1(η1z − ζ1y), µ′ = k1(ζ1x− ξ1z), ν ′ = k1(ξ1y − xη1).

bThe formula in the top row describes the first three components of the driving force;
the fourth component is obtained analytically. The constants m and m∗ designate the
passive and active proper mass, respectively, while the remaining letters stand for space-
time points, as reconstructed in Figure 1(p. 29).The formula in the bottom row represents
the driving force of gravitation as described, but not formally expressed, by Minkowski
(1909). The constants m and m1 designate the active and passive proper mass, ṫ1 and ẋ1
are 4-velocity components of the passive mass, c is the speed of light and K is a 4-vector,
for the definition of which see note 111.
cThe constants m0 and m designate the passive and active proper mass, respectively, c
denotes the speed of light, B0 and B represent the corresponding 4-velocities, and R
stands for the lightlike interval between the mass points.
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4 Conclusion: On the emergence of the four-dimen-
sional view

After a century-long process of accommodation to the use of tensor calculus and
spacetime diagrams for analysis of physical interactions, the mathematical diffi-
culties encountered by the pioneers of 4-dimensional physics are hard to come to
terms with. Not only is the oft-encountered image of flat-spacetime physics as
a trivial consequence of Einstein’s special theory of relativity and Felix Klein’s
geometry consistent with such accommodation, it reflects Minkowski’s own char-
acterization of the background of the four-dimensional approach(p. 22). How-
ever, this description ought not be taken at face value, being better understood as
a rhetorical ploy designed to induce mathematicians to enter the nascent field of
relativistic physics (Walter 1999a). When the principle of relativity was formu-
lated in 1905, even for one as adept as Henri Poincaré in the application of group
methods, the path to a four-dimensional language for physics appeared strewn
with obstacles. Much as Poincaré had predicted (above, p. 15), the construction
of this language cost Minkowski and Sommerfeld considerable pain and effort.

Clear-sighted as he proved to be in this regard, Poincaré did not foresee the
emergence of forces that would accelerate the construction and acquisition of a
four-dimensional language. With hindsight, we can identify five factors favoring
the use and development of a four-dimensional language for physics between 1905
and 1910: the elaboration of new concepts and definitions, the introduction of a
graphic model of spacetime, the experimental confirmation of relativity theory,
the vector-symbolic movement, and problem-solving performance.

In the beginning, the availability of workable four-dimensional concepts and
definitions regulated the analytic reach of a four-dimensional approach to physics.
Poincaré’s discovery of the 4-vectors of velocity and force in the course of his
elaboration of Lorentz-invariant quantities, and Minkowski’s initial misreading of
Poincaré’s definitions underline how unintuitive these notions appeared to turn-of-
the-century mathematicians. The lack of a 4-velocity definition visibly hindered
Minkowski’s elaboration of spacetime mechanics and theory of gravitation. It
is remarkable that even after Minkowski presented the notions of proper time,
worldline, rest-mass density, and the energy-momentum tensor, putting the space-
time electrodynamics and mechanics on the same four-dimensional footing, his
approach failed to convince physicists. Nevertheless, all of these discoveries ex-
tended the reach of the four-dimensional approach, in the end making it a viable
candidate for the theorist’s toolbox.

Next, Minkowski’s visually-intuitive spacetime diagram played a decisive role
in the emergence of the four-dimensional view. While the spacetime diagram re-
flects some of the concepts mentioned above, its utility as a cognitive tool ex-
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ceeded by far that of the sum of its parts. In Minkowski’s hands, the spacetime
diagram was more than a tool, it was a model used to present both of his laws
of gravitation. Beyond their practical function in problem-solving, spacetime dia-
grams favored the diffusion in wider circles of both the theory of relativity and the
four-dimensional view of this theory, in particular among non-mathematicians,
by providing a visually intuitive means of grasping certain consequences of the
theory of relativity, such as time dilation and Lorentz contraction. Minkowski’s
graphic model of spacetime thus enhanced both formal and intuitive approaches
to special relativity.

In the third place, the ultimate success of the four-dimensional view hinged on
the empirical adequacy of the theory of relativity. It is remarkable that the con-
ceptual groundwork, and much of the formal elaboration of the four-dimensional
view was accomplished during a time when the theory of relativity was less well
corroborated by experiment than its rivals. The reversal of this situation in favor of
relativity theory in late 1908 favored the reception of the existing four-dimensional
methods, and provided new impetus both for their application and extension, and
for the development of alternatives, such as that of Sommerfeld.

The fourth major factor influencing the elaboration of a four-dimensional view
of physics was the vector-symbolic movement in physics and mathematics at the
turn of the twentieth century (McCormmach 1976, xxxi). The participants in
this movement, in which Sommerfeld was a leading figure, believed in the effi-
cacy of vector-symbolic methods in physics and geometry, and sought to unify
the plethora of notations employed by various writers. The movement’s strength
varied from country to country; it was largely ignored in France, for example, in
favor of the coordinate-based notation favored by Poincaré and others. Poincaré’s
pronounced disinterest in the application and development of a four-dimensional
calculus for physics was typical of contemporary French attitudes toward vector-
symbolic methods. In Germany, on the other hand, electrodynamicists learned
Maxwell’s theory from the mid-1890s in terms of curl h and div E. In Zürich and
Göttingen during this period, Minkowski instructed students – including Einstein
– in the ways of the vector calculus. Unlike Poincaré, Minkowski was convinced
that a four-dimensional language for physics would be worth the effort spent on
its elaboration, yet he ultimately abandoned the vector-symbolic model in favor of
an elegant and sophisticated matrix calculus. This choice was deplored by physi-
cists (including Einstein), and mooted by Sommerfeld’s conservative extension
of the standard vector formalism into an immediately successful 4-vector alge-
bra and analysis. In sum, the vector-symbolic movement functioned alternatively
as an accelerator of the elaboration of four-dimensional calculi (existing systems
served as templates), and as a regulator (penalizing Minkowski’s neglect of stan-
dard vector operations).

The fifth and final parameter affecting the emergence of the four-dimensional
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view of physics was problem-solving performance. From the standpoint of ease
of calculation, any four-dimensional vector formalism at all compared well to a
Cartesian-coordinate approach, as Weinstein’s textbook demonstrated; the advan-
tage of ordinary vector methods over Cartesian coordinates was less pronounced.
As we have seen, Poincaré applied his approach to the problem of constructing
a Lorentz-invariant law of gravitational attraction, and was followed in turn by
Minkowski and Sommerfeld, both of whom also provided examples of problem-
solving. In virtue of the clarity and order of Sommerfeld’s detailed, coordinate-
free comparison of the laws of gravitation of Poincaré and Minkowski, his 4-
vector algebra appeared to be the superior four-dimensional approach, just when
physicists and mathematicians were turning to relativity in greater numbers.
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Notes
1In limiting the scope of this paper to the methods applied by their authors to the problem of

gravitation, four contributions to four-dimensional physics are neglected: that of Richard Harg-
reaves, based on integral invariants (1908), two 4-vector systems due to Max Abraham (1910)
and Gilbert Newton Lewis (1910a), and Vladimir Varičak’s hyperbolic-function based approach
(1910).

2For an overview of research on gravitation from 1850 to 1915, see Roseveare (1982). On
early 20th-century investigations of gravitational absorption, see Andrade Martins (1999). While
only Lorentz-covariant theories are considered in this paper, the relative acceptance of the prin-
ciple of relativity among theorists is understood as one parameter among several influencing the
development of four-dimensional physics.

3Buchwald (1985, 242), Darrigol (2000, 325), Buchwald (2001).
4Lorentz took the force per unit charge on a volume element of charged matter moving with

velocity v in the electric and magnetic fields d and h to be f = d+ 1
c [v ·h], where the brackets indi-
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cate a vector product (Lorentz 1904c, 156–157). For a comparison of electrodynamic Lagrangians
from Maxwell to Schwarzschild, see Darrigol (2000, App. 9).

5On the Maxwellian approach to gravitation, see North (1965, chap. 3), Roseveare (1982,
129–31), and Norton (1992, 32). The distinction drawn here between retarded action at a distance
and field representations reflects that of Lorentz (1904b), for whom this was largely a matter of
convenience. On nineteenth-century conceptions of the electromagnetic field, see Cantor & Hodge
(1981).

6On Poincaré’s theory see Cunningham (1914, 173), Whitrow (1965, 20), Harvey (1965, 452),
Cuvaj (1970, App. 5), Schwartz (1972), Zahar (1989, 192), Torretti (1996, 132). On Minkowski’s
theory see Weinstein (1914, 61), Pyenson (1985a, 88), Corry (1997, 287).

7Laplace estimated the propagation velocity of gravitation to be 106 times that of light, and
Poincaré noted that such a signal velocity would allow inertial observers to detect their motion
with respect to the ether (Poincaré 1904, 312).

8Poincaré (1906, 153–154); Miller (1973, 230–233). Following Abraham’s account (Abra-
ham 1905, 205), the problem may be presented in outline as follows (using modified notation
and units). Consider a deformable massless sphere of radius a and uniformly distributed sur-
face charge, and assume that this is a good model of the electron. The longitudinal mass mq of
this sphere may be defined as the quotient of external force and acceleration, mq = d|G|/d|v|,
where G is the electromagnetic momentum resulting from the electron’s self-fields, and v is elec-
tron velocity. Defining the electromagnetic momentum to be G =

∫
E × BdV , where E and

B denote the electric and magnetic self-fields, and V is for volume, we let c = 1, and find the
longitudinal mass for small velocities to be mq =

e2

6πa

(
1− v2

)−3/2
. Longitudinal electron mass

may also be defined in terms of the electromagnetic energy W of the electron’s self-fields, assum-
ing quasistationary motion: mq = 1

|v|
dW
d|v| , where W = e2

6πa

(
1− v2

)−1/2
+ e2

24πa

(
1− v2

)1/2
.

This leads, however, to an expression for longitudinal mass different from the previous one:
mq = e2

6πa

[(
1− v2

)−3/2
+ 1

4

(
1− v2

)−1/2
]
. From the difference in these two expressions for

longitudinal mass, Abraham concluded that the Lorentz electron required the postulation of a non-
electromagnetic force and was thereby not compatible with a purely electromagnetic foundation
of physics.

9See Poincaré (1885, 1902a, 1902b). In the limit of null angular velocity, gravitational attrac-
tion can be replaced by electrostatic repulsion, with a sign reversal in the pressure gradient.

10Einstein (1905, 917). Poincaré also neglected the mass contribution of the binding potential
in his 1906–1907 Sorbonne lectures, according to student notes (Poincaré 1953, 233). For reviews
of Poincaré’s derivation of the binding potential, see Cuvaj (1970, App. 11) and Miller (1973). On
post-Minkowskian interpretations of the binding potential (also known as Poincaré pressure), see
Cuvaj (1970, 203), Miller (1981, 382, n. 29), and Yaghjian (1992).

11In this paper Poincaré made no distinction between inertial and gravitational mass.
12As Cuvaj (1968, 1112) points out, Poincaré may have found inspiration for this conjecture in

Paul Langevin’s remark that gravitation stabilized the electron against Coulomb repulsion. Unlike
Langevin, Poincaré anticipated a unified theory of gravitation and electrons, in the spirit of theories
pursued later by Gustav Mie, Gunnar Nordström, David Hilbert, Hans Reissner, Hermann Weyl
and Einstein; for an overview see Vizgin (1994).

13“Ainsi la théorie de Lorentz expliquerait complètement l’impossibilité de mettre en évidence
le mouvement absolu, si toutes les forces étaient d’origine électromagnétique” (Poincaré 1906,
166).

14See Lorentz (1900), Havas (1979, 83), Torretti (1996, 131). On Lorentz’s precursors see
Whittaker (1953, 149) and Zenneck (1903). Lorentz’s theory of gravitation failed to convince
Oliver Heaviside, who had carefully weighed the analogy from electromagnetism to gravitation
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(1893). In a letter to Lorentz, Heaviside called into question the theory’s electromagnetic nature,
by characterizing Lorentz’s gravitational force as “action at a distance of a double kind” (18 July,
1901, Lorentz Papers, Rijksarchief in Noord-Holland te Haarlem). Aware of these difficulties,
Lorentz eventually discarded his theory, citing its incompatibility with the principle of relativity
(Lorentz 1914, 32).

15In his 1906–1907 Sorbonne lectures (1953), Poincaré discussed a different theory (based on
an idea due to Le Sage) that Lorentz had proposed in the same paper, without mentioning the
Mossotti-style theory. His first discussion of the latter theory was in 1908, when he considered it to
be an authentic relativistic theory, and one in which the force of gravitation was of electromagnetic
origin (Poincaré 1908, 399).

16Poincaré (1906, 166). Poincaré’s account of Lorentz’s reasoning should be taken with a grain
of salt, as Lorentz made no mention of his theory of gravitation in the 1904 publication referred
to by Poincaré, “Electromagnetic phenomena in a system moving with any velocity less than that
of light.” While the electron theory developed in the latter paper did not address the question of
the origin of the gravitational force, it admitted the possibility of a reduction to electromagnetism
(such as that of his own theory) by means of the additional hypothesis referred to in the quotation:
all forces of interaction transformed in the same way as electric forces in an electrostatic system
(Lorentz 1904a, § 8). The contraction hypothesis formerly invoked to account for the null result
of the Michelson-Morley experiments, Lorentz added, was subsumed by the new hypothesis.

17“Regardons x, y, z, t
√
−1, δx, δy, δz, δt

√
−1, δ1x, δ1y, δ1z, δ1t

√
−1, comme les coordon-

nées de 3 points P , P ′, P ′′ dans l’espace à 4 dimensions. Nous voyons que la transformation
de Lorentz n’est qu’une rotation de cet espace autour de l’origine, regardée comme fixe. Nous
n’aurons donc pas d’autres invariants distincts que les six distances des trois points P , P ′, P ′′

entre eux et à l’origine, ou, si l’on aime mieux, que les 2 expressions : x2 + y2 + z2 − t2,
xδx+ yδy + zδz − tδt, ou les 4 expressions de même forme qu’on en déduit en permutant d’une
manière quelconque les 3 points P , P ′, P ′′” (Poincaré 1906, 168–169).

18Poincaré’s three points P, P ′, P ′′ may be interpreted in modern terminology as follows. Let
the spacetime coordinates of the passive mass point beA = (x0, y0, z0, t0), with ordinary velocity
ξ = (δx/δt, δy/δt, δz/δt), such that at time t0 + δt it occupies the spacetime point A′ = (x0 +
δx, y0+δy, z0+δz, t0+δt). Likewise for the active mass point,B = (x0+x, y0+y, z0+z, t0+t),
with ordinary velocity ξ1 = (δ1x/δ1t, δ1y/δ1t, δ1z/δ1t), such that at time t0+ t+ δ1t, it occupies
the spacetime point B′ = (x0+x+ δ1x, y0+y+ δ1y, z0+z+ δ1z, t0+ t+ δ1t). Poincaré’s three
quadruplets may now be expressed as position 4-vectors: P = B−A, P ′ = B′−B, P ′′ = A′−A.

19While the first German textbook on electromagnetism to employ vector notation systemati-
cally dates from 1894 (Föppl 1894), the first comparable textbook in French was published two
decades later by Jean-Baptiste Pomey (1861–1943), instructor of theoretical electricity at the École
supérieure des Postes et Télégraphes in Paris (Pomey 1914).

20The Laplacian was expressed generally as ∇2 = ∂2/∂x2+∂2/∂y2+∂2/∂z2, but by Poincaré
as ∆. The d’Alembertian, □ ≡ ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 − ∂2/∂t2, became in Poincaré’s
notation: □ ≡ ∆−d2/dt2. Poincaré employed □ in his lectures on electricity and optics (Poincaré
1901, 456), and was the first to employ it in a relativistic context.

21Poincaré’s manuscript lecture notes for celestial mechanics, however, show that he saw fit to
introduce the quaternionic method to his students (undated notebook on quaternions and celestial
mechanics, 32 pp., private collection, Paris; hpcd76, 78, 93, Henri Poincaré Archives, Nancy).

22Manuscript report of the Ph.D. thesis submitted by Henri Bouasse, 13 December, 1892,
AJ165535, Archives nationales, Paris. From Poincaré’s conservative habits regarding formalism,
he appears as an unlikely candidate at best for the development of a four-dimensional calculus circa
1905; cf. H. M. Schwartz’s counterfactual conjecture: if Poincaré had adopted the ordinary vector
calculus by the time he wrote his Rendiconti paper, “he would have in all likelihood introduced
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explicitly . . . the convenient four-dimensional vector calculus” (1972, 1287, note 7).
23 The invariants (1) may be expressed in ordinary vector notation, letting

∑
x = x,

∑
ξ = v,∑

ξ1 = v1, and for convenience, k = 1/
√

1−
∑
ξ2, k1 = 1/

√
1−

∑
ξ21 , such that the four

quantities (1) read as follows: x2 − t2, k(t− xv), k1(t− xv1), kk1(1− vv1).
24Poincaré’s four kinematic invariants (1) are functions of the following six intermediate invari-

ants: a = x2 + y2 + z2 − t2, b = xδx + yδy + zδz − tδt, c = xδ1x + yδ1y + zδ1z − tδ1t,
d = δxδ1x+ δyδ1y+ δzδ1z− δtδ1t, e = δx2+ δy2+ δz2− δt2, f = δ1x

2+ δ1y
2+ δ1z

2− δ1t2.
In terms of the latter six invariants, the four kinematic invariants (1) may be expressed as follows:∑
x2 − t2 = a, A = −b/

√
−e, B = −c/

√
−f , and C = −d/(

√
−e

√
−f). For a slightly

different reconstruction of Poincaré’s kinematic invariants, see Zahar (1989, 193).
25This definition was remarked by Pauli (1921, 637).
26The same subscript denotes the force acting on the passive mass,

∑
X1, and the velocity of

the active mass, ξ1.
27The ratio ρ/ρ′ is equal to the Lorentz factor, since in Poincaré’s configuration, ε = −ξ. Some

writers hastily attribute a 4-current vector to Poincaré, the form ρ(ξ, η, ζ, i) being implied by
Poincaré’s 4-vector definitions of force density and velocity.

28“La transformation de Lorentz . . . agira sur ξ, η, ζ, 1 de la même manière que sur δx, δy,
δz, δt, avec cette différence que ces expressions seront en outre multipliées par le même facteur
δt/δt′ = 1/k(1 + ξε)” (Poincaré 1906, 169).

29The invariants (4) may be expressed in ordinary vector notation, recalling the definitions of 1,
and letting

∑
X1 = f1, and T1 = f1v: k2f21 (1− v2), kf1(x− vt), kk1f1(v1 − v), k2f1(v − v).

The fourth invariant is obviously null in this form.
30Poincaré’s force invariants (4) are functions of the following six intermediate invariants: m =

k(X1δx+Y1δy+Z1δz−T1δt), n = k(X1δ1x+Y1δ1y+Z1δ1z−T1δ1t), o = k(X1x+Y1y+Z1z−
T1t), p = k2(X2

1+Y
2
1 +Z

2
1−T 2

1 ), q = δx2+δy2+δz2−δt2, and s = δ1x
2+δ1y

2+δ1z
2−δ1t2. Let

the four force invariants (4) be denoted by M , N , P , and S, then M = p, N = o, P = n/
√
−s,

and S = m/
√
−q.

The same force invariants (4) are easily calculated using 4-vectors. Recalling the definitions
in 1 and 4, let R = (x, it), U = k(v, i), U1 = k1(v1, i), and F1 = k(f1, if1v), where

√
−1 = i.

Then the force invariants (4) may be expressed as scalar products of 4-vectors: M = F1F1,
N = F1R, P = F1U1, and S = F1U .

31The kinematic invariants (1) obtained by Poincaré differ from those obtained from the prod-
ucts of 4-position and 4-velocity, contrary to Zahar’s account (Zahar 1989, 194). Recalling the
4-vectors R, U , U1 from 4, we form the products: RR, RU , RU1, and UU1. In Poincaré’s
notation, the latter four products are expressed as follows:∑

x2 − t2, − t−
∑
xξ√

1−
∑
ξ2
, − t−

∑
xξ1√

1−
∑
ξ21
, − 1−

∑
ξξ1√

(1−
∑
ξ2) (1−

∑
ξ21)

.

These invariants differ from those of Poincaré (1) only by the sign of A, B, and C, as noted by
Sommerfeld (1910b, 686).

32An emission theory was proposed a few years later by Walter Ritz; see Ritz (1908).
33Using (5), Poincaré found the transformed force invariants 1/r41 , −1/r1 −

∑
x1(ξ − ξ1)/r

2
1 ,

and
∑
x1(ξ − ξ1)/r

3
1 .

34“Au premier abord, la solution (6) paraît la plus simple, elle ne peut néanmoins être adoptée;
en effet, comme M , N , P sont des fonctions de X1, Y1, Z1, et de T1 = ΣX1ξ, on peut tirer de
ces trois équations (6) les valeurs de X1, Y1, Z1; mais dans certains cas ces valeurs deviendraient
imaginaires” (Poincaré 1906, 172).

35Replacing A and B in (6) by their definitions results in the three equations: M = k2f21 (1 −
v2) = 1/k4(r + xv1)

4, N = f1(x+ vr) = −(r + xv)/[k21(r + xv1)
2], P = kk1f1(v1 − v) =
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[k(r + xv)− k1(r + xv1)]/[k
3
1(r + xv1)

3]. Equations N and P imply an attractive force for all
values of v and v1, while M leads to the ambiguously-signed solution: f1 = ±1/[k2(r+ xv1)

2].
Presumably, the superfluous plus sign in (6) is an indication of Poincaré’s preoccupation with
obtaining a force of correct sign.

36A = −k0(r +
∑
xξ), B = −k1(r +

∑
xξ1), and C = k0k1(1−

∑
xξξ1).

37Using modern 4-vector notation, and denoting Poincaré’s gravitational force 4-vector F1 =
k0(X1, Y1, Z1, iT1), equation (7) may be expressed: F1 = αR + βU + γU1, where R denotes a
lightlike 4-vector between the mass points, α, β, γ stand for undetermined functions of the three
kinematic invariants A, B, and C, while U = k0(v, i), U1 = k1(v1, i) designate the 4-velocities
of the passive and active mass points, respectively.

38In ordinary vector form, recalling the definitions in 1 and 4, the spatial part of Poincaré’s law
is expressed as follows: f1 = −[(x+ rv1)+v× (v1×x)]/[kk31(r+xv1)

3(1−vv1)]. Cf. Zahar
(1989, 199).

39This law may be reformulated using the vectors defined in 1 and 4, and neglecting (with
Poincaré) the component T1: f1 = −[(x+rv1)+v× (v1×x)]/[k21(r+xv1)

3]. Cf. Zahar (1989,
199). Comparable expressions were developed by Lorentz (1910, 1239) and Kottler (1922, 169).

40“Alors λ, µ, ν, ou λ/B3, µ/B3, ν/B3, est une espèce de champ électrique, tandis que λ′, µ′,
ν′, ou plutôt λ′/B3, µ′/B3, ν′/B3, est une espèce de champ magnétique” (Poincaré 1906, 175).

41Whittaker (1951, 394, note 3). A 4-potential corresponding to Poincaré’s second law (10) was
given by Kottler (1922, 169). Additional assumptions are required in order to identify a “gravito-
magnetic” field with a term arising from the Lorentz transformation of force: v× (v1 ×x), or the
second term of the 3-vector version of (10) (neglecting the global factor; see 10). In particular, it
must be assumed that when the sources of the “gravito-electric” field B−3(λ, µ, ν) are at rest, the
force on a mass point m is f = mB−3(λ, µ, ν), independent of the velocity of m. For a detailed
discussion, see Jackson (1975, 578).

42Poincaré reviewed Laplace’s argument in his 1906–1907 lectures (Poincaré 1953, 194). For
a contemporary overview of the question of the propagation velocity of gravitation see Tisserand
(1889, 511).

43Fritz Wacker, a student of Richard Gans in Tübingen, published similar results in 1906.
44Poincaré (1908, 400). Poincaré explained to his students that Mercury’s anomalous advance

could plausibly be attributed to an intra-Mercurial matter belt (Poincaré 1953, 265), an idea ad-
vanced forcefully by Hugo von Seeliger in 1906 (Roseveare 1982, 78). In a lecture delivered in
September, 1909, Poincaré revised his estimate of the relativistic perihelial advance downward
slightly to 6" (Poincaré 1909).

45“[S]i nous admettions le postulat de relativité, nous trouverions dans la loi de gravitation et
dans les lois électromagnétiques un nombre commun qui serait la vitesse de la lumière; et nous le
retrouverions encore dans toutes les autres forces d’origine quelconque” (Poincaré 1906, 131).

46“Ou bien il n’y aurait rien au monde qui ne fût d’origine électromagnétique. Ou bien cette
partie qui serait pour ainsi dire commune à tous les phénomènes physiques ne serait qu’une ap-
parence, quelque chose qui tiendrait à nos méthodes de mesure” (Poincaré 1906, 131–132).

47Poincaré (1906, 132), Stein (1987, 397, note 29). On the history of magneto-cathode rays, see
Carazza & Kragh (1990).

48“Il semble bien en effet qu’il serait possible de traduire notre physique dans le langage de la
géométrie à quatre dimensions; tenter cette traduction ce serait se donner beaucoup de mal pour
peu de profit, et je me bornerai à citer la mécanique de Hertz où l’on voit quelque chose d’analogue.
Cependant, il semble que la traduction serait toujours moins simple que le texte, et qu’elle aurait
toujours l’air d’une traduction, que la langue des trois dimensions semble la mieux appropriée à la
description de notre monde, encore que cette description puisse se faire à la rigueur dans un autre
idiome” (Poincaré 1907, 15). See also Walter (1999b, 98), and for a different translation, Galison
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(1979, 95). On Hertz’s mechanics, see Lützen (1999).
49“[D]ans les Sciences mathématiques, une bonne notation a la même importance philosophique

qu’une bonne classification dans les Sciences naturelles” (Poincaré 1898, x).
50Poincaré’s analysis of the concepts of space and time in relativity theory appeared in 1912

(Poincaré 1912). On the cool reception among mathematicians of Poincaré’s views on physical
geometry, see Walter (1997).

51Marcolongo (1906). This paper later gave rise to a priority claim for a slightly different
substitution: u = it (Marcolongo to Arnold Sommerfeld, 5 May, 1913, Archives for History of
Quantum Physics 32). On Marcolongo’s paper see also Maltese (2000, 135).

52Rüdenberg (1973), Serre (1993), Strobl (1985).
53Minkowski to Hilbert, 14 February, 1885, Rüdenberg & Zassenhaus (1973, 30). Minkowski’s

fears turned out to be for naught, as Poincaré pursued a different line of research (Zassenhaus
1975, 446). On Minkowski’s early work on the geometry of numbers see Schwermer (1991); on
later developments, see Krätzel (1989).

54See Gray (1992) and the reception study by Barrow-Green (1997, chap. 6).
55Minkowski to Hurwitz, 5 January, 1892, Cod. Ms. Math. Arch. 78: 188, Handschriften-

abteilung, Niedersächsische Staats- und Universitätsbibliothek (NSUB). On Minkowski’s report
see also Barrow-Green (1997, 143).

56Minkowski papers, Arc. 4° 1712, Jewish National and University Library (JNUL); Minkowski
to Hilbert, 11 March, 1901, Rüdenberg & Zassenhaus (1973, 139).

57Vorlesungen über analytische Mechanik, Wintersemester 1897/98, p. 29, Minkowski papers,
Arc. 4° 1712, JNUL.

58Loc. cit. note 57. The concepts of scalar and vector mentioned by Minkowski were those
introduced by W. R. Hamilton (1805–1865), the founder of quaternion theory. Even in Britain,
vectors were judged superior to quaternions for use in physics, giving rise to spirited exchanges in
the pages of Nature during the 1890s, as noted by Bork (1966) and Crowe (1967, chap. 6). On the
introduction of vector analysis as a standard tool of the physicist during this period, see Jungnickel
& McCormmach (1986, 342), and for a general history, see Crowe (1967).

59Klein (1897); Vorlesungen über Mechanik, Wintersemester 1898/99, 47, 59, Minkowski pa-
pers, Arc. 4° 1712, JNUL. Minkowski referred to Klein and Sommerfeld’s text in relation to the
concept of force and its anthropomorphic origins, the kinetic theory of gas, and the theory of
elasticity.

60Minkowski to Sommerfeld, 30 October, 1898, MSS 1013A, Special Collections, National
Museum of American History. An extensive reading list of mechanics texts is found in Minkowski’s
course notes for the 1903–1904 winter semester, Mechanik I, 9, Minkowski papers, Arc. 4° 1712,
JNUL.

61Minkowski to Sommerfeld, 30 October, 1898, loc. cit. note 60; Minkowski to Sommerfeld, 18
November, 1899, Nachlass Sommerfeld, Arch HS1977-28/A, 233, Deutsches Museum München;
research notebook, 12 December, 1899, Arc. 4° 1712, Minkowski papers, JNUL.

62Minkowski (1888, 1907); Minkowski to Sommerfeld, 30 October, 1898, loc. cit. note 60.
63On Göttingen’s rise to preeminence in these fields, see Manegold (1970), Pyenson (1985b,

chap. 7), and Rowe (1989, 1992).
64Nachlass Hilbert 570/9, Handschriftenabteilung, NSUB; Pyenson (1985b, chap. 5).
65Jahresbericht der deutschen Mathematiker-Vereinigung 14, 61.
66Although Poincaré spoke on celestial mechanics in Göttingen in 1895 (Rowe 1992, 475), and

was invited back in 1902, he did not return until 1909, a few months after Minkowski’s sudden
death. See Hilbert to Poincaré, 6 November, 1908 (Dugac 1986, 209); Klein to Poincaré, 14
Jan., 1902 (Dugac 1989, 124–125). Sponsored by the Wolfskehl Fund, Poincaré’s 1909 lecture
series took place during “Poincaré week”, in the month of April. His lectures were published the
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following year (Poincaré 1910) in a collection launched in 1907, based on an idea of Minkowski’s
(Klein 1907, IV).

67Jahresbericht der deutschen Mathematiker-Vereinigung 14:128, 586; 15:154–155; 17:5.
68On Kaufmann’s cathode-ray deflection experiments, see Miller (1981, 226) and Hon (1995).

Readings of Kaufmann’s articles are discussed at length by Richard Staley (1998, 270).
69Undated typescript of a lecture on a new form of the equations of electrodynamics, Math. Archiv

60:3, Handschriftenabteilung, NSUB. This typescript differs significantly from the posthumously-
published version (1915).

70“Es entsteht die grosse Frage, wie sich denn das Gravitationsgesetz in das Reich des Relativi-
tätsprinzipes einordnen lässt” (p. 15).

71Actually, Poincaré postulated the lightlike propagation velocity of gravitation, as mentioned
above 5(p. 10).

72 “Poincaré weist ein solches Gesetz auf, indem er auf die Betrachtung von Invarianten der
Lorentzschen Gruppe eingeht, doch ist das Gesetz nur eines unter vielen möglichen, und die be-
treffenden Untersuchungen tragen in keiner Weise einen definitiven Charakter” (p. 16). See also
Pyenson (1973, 233).

73Jahresbericht der deutschen Mathematiker-Vereinigung 17 (1908), Mitt. u. Nachr., 4–5.
74The same term was employed by Cayley to denote a line which meets any given lines, in a

paper of 1869.
75When written out in full, one obtains, for example, ψ23 = ∂ψ3/∂x2 − ∂ψ2/∂x2 = hx.

Minkowski later renamed the Traktor a Raum-Zeit-Vektor II. Art (Minkowski 1908, § 5), but it
is better known as either a 6-vector, an antisymmetric 6-tensor, or an antisymmetric, second-
rank tensor. As the suite of synonyms suggests, this object found frequent service in covariant
formulations of electrodynamics.

76For a comparison of the Lorentz and Larmor theories, see Darrigol (1994).
77On the four-dimensional transcription of Ohm’s law see Arzeliès & Henry (1959, 65–67).
78Minkowski mentions this very property on p. 6.
79The passage in question may be translated as follows: “Next we considerX , Y , Z, T

√
−1, as

the coordinates of a fourth point Q; the invariants will then be functions of the mutual distances of
the five points O, P , P ′, P ′′, Q, and among these functions we must retain only those that are 0th
degree homogeneous with respect, on one hand, to X , Y , Z, T , δx, δy, δz, δt (variables that can
be further replaced by X1, Y1, Z1, T1, ξ, η, ζ, 1), and on the other hand, with respect to δ1x, δ1y,
δ1z, 1 (variables that can be further replaced by ξ1, η1, ζ1, 1)” (Poincaré 1906, 170). The misprint
is in the next-to-last set of variables, where instead of 1 we should have δ1t.

80One other obvious source for Minkowski’s error is Lorentz’s transformation of charge density:
ϱ′ = ϱ/βl3, where 1/β =

√
1− v2/c2, and l is a constant later set to unity (Lorentz 1904a, 813),

although this formula was carefully corrected by Poincaré.
81Let the differential parameter dτ of a worldline be expressed in Minkowskian coordinates by

dτ2 = −(dx21 + dx22 + dx23 + dx24). The 4-velocity vector Uµ is naturally defined to be the first
derivative with respect to this parameter, Uµ = dxµ/dτ (µ = 1, 2, 3, 4).

82The incongruity noted by Pyenson (1985b, 84) between Minkowski’s announcement of a
four-dimensional physics on one hand, and on the other hand, a trifle of 4-vector definitions and
expressions, is to be understood as a indication of Minkowski’s gradual ascent of the learning
curve of four-dimensional physics.

83Minkowski defined the spatial components of the empty space force density 4-vector Xj in
terms of the ordinary force density components X, Y, Z, and their product with velocity: A =
Xwx,Ywy,Zwz , such that Xj = X,Y,Z, iA. He also expressed the force density 4-vector as the
product of 4-current-density and the Traktor: Xj = ϱ1ψj1 + ϱ2ψj2 + ϱ3ψj3 + ϱ4ψj4.
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84Minkowski’s manuscript was delivered to the printer on 21 February, 1908, corrected, and
published on 5 April, 1908 (Journal für die “Nachrichten” der Gesellschaft der Wissenschaften
zu Göttingen, mathematische-naturwissenschaftliche Klasse 1894–1912, Scient. 66, Nr. 1, 471,
Archiv der Akademie der Wissenschaften zu Göttingen). I thank Tilman Sauer for pointing out
this source to me.

85While the published version of Minkowski’s 5 November lecture refers on one occasion to
a “Raumzeitpunkt” (Minkowski 1915, 934), the term occurs nowhere in the archival typescript.
The source of this addition is unknown. A manuscript annotation of the first page of the typescript
bears Sommerfeld’s initials, and indicates that he compared parts of the typescript to the proofs,
as Lewis Pyenson (1985b, 82) points out. Pyenson errs, however, in attributing to Sommerfeld
the authorship of the remaining annotations, which were all penned in Minkowski’s characteristic
cramped hand.

86While Minkowski’s tensor is traceless, it is also asymmetric, a fact which led to criticism
and rejection by leading theorists of the day. His asymmetric tensor was later rehabilitated; for a
technical discussion with reference to the original papers, see Møller (1972, 219). In the absence
of matter, his tensor assumes a symmetric form; in this form, it was hailed by theorists.

87Minkowski defined the energy-momentum tensor S in two ways: as the product of six-vectors,
fF = S − L, where L is the Lagrange density, and in component form via the equations for
Maxwell stresses, the Poynting vector, and electromagnetic energy density (Minkowski 1908, 96).

88Minkowski’s alternative between a 4-force definition and the “natural” spacetime equations
of motion was underlined by Pauli (1921, 664).

89Planck (1906, eqn. 6), Minkowski (1909, §4). In the latter lecture, Minkowski proposed
the modern definition of kinetic energy as the temporal component of 4-momentum times c2,
or mc2dt/dτ . The “spatial” part of the driving force (21) was referred to by Lorentz (1910,
1237) as a “Minkowskian force” (Minkowskische Kraft), differing from the Newtonian force by
a Lorentz factor. Lorentz complemented the Minkowskian force with a “Minkowskian mass”
(Minkowskische Masse).

90Minkowski’s argument may be summarized as follows. From the definition of a 4-vector, the
following orthogonality relation holds for the driving force R:

Rx
dx

dτ
+Ry

dy

dτ
+Rz

dz

dτ
= Rt

dt

dτ
. (44)

Integration of the rest-mass density over the hypersurface normal to the worldline of the mass
point results in the driving force components (21), but if the integration is to be performed instead
over a constant-time hypersurface, proper time is replaced by coordinate time, such that the fourth
equation reads: md/dt(dt/dτ) = Rtdτ/dt. From (44) we obtain an expression for Rt, which we
multiply by dτ/dt:

m
d

dt

(
dt

dτ

)
= wxRx

dτ

dt
+wyRy

dτ

dt
+wzRz

dτ

dt
. (45)

Minkowski reasoned that since the right-hand side of (45) describes the rate at which work is done
on the particle, the left-hand side must be the rate of change of the particle’s kinetic energy, such
that (45) represents the law of energy conservation. He immediately related (45) to the kinetic
energy of the particle:

m

(
dt

dτ
− 1

)
= m

(
1√

1−w2
− 1

)
= m( 12 |w|2 + 3

8 |w|4 + · · · ). (46)

Minkowski did not justify the latter expression, but in virtue of his definition of proper time,
dτ = dt

√
1−w2, the left-hand side of (45) may be rewritten as m(d/dt)(1/

√
1−w2), such that
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upon integration the particle’s kinetic energy is m/
√
1−w2 + C, where C is a constant. For

agreement with the Newtonian expression of kinetic energy in case of small particle velocities
(w ≪ 1), we let C = −m, which accords both with (46) and the definition of kinetic energy given
in a later lecture (cf. note 89).

91Jahrbuch über die Fortschritte für Mathematik 39, 1908, 910.
92This trend is described by Darrigol (1993, 270). The sharp contrast between the importance

assigned to vector methods in France and Germany may be linked to the status accorded to applied
mathematics in these two nations, as discussed by H. Gispert in her review of the French version
of Klein’s Encyklopädie (Gispert 2001).

93At one point during his calculations Minkowski seemed convinced of the utility of this formal-
ism, remarking that electrodynamics is “predestined for application of quaternionic calculations”
(Math. Archiv 60:6, 21, Handschriftenabteilung, NSUB).

94A precedent for Minkowski’s exclusive use of lor may be found in Gibbs & Wilson (1901),
where ∇ is similarly preferred to vector functions.

95Cf. Max von Laue’s remark that physicists understood little of Minkowski’s work because of
its unfamiliar mathematical expression (Von Laue 1951, 515), and Chuang Liu’s account of the dif-
ficulty experienced by Max Abraham and Gunnar Nordström in applying Minkowski’s formalism
(Liu 1991, 66). While Minkowski’s calculus is a straightforward extension of Cayley’s formal-
ism (for a summary, see Cunningham 1914, chap. 8), the latter formalism was itself unfamiliar to
physicists.

96Math. Archiv 60:5, Handschriftenabteilung, NSUB. This 82-page set of notes dates from 23
May to 6 October, 1908. A posthumously published paper on the electron-theoretical derivation of
the basic equations of electrodynamics for moving media, while purported to be from Minkowski’s
Nachlass, was written entirely by Max Born, as he acknowledged (Minkowski & Born 1910, 527).
In the latter publication lor makes only a brief appearance.

97Math. Archiv 60:6, 10, Handschriftenabteilung, NSUB.
98This “peculiar” consequence of Minkowski’s spacetime mechanics was underlined by Maxwell’s

German translator, the Berlin physicist Max B. Weinstein (1914, 42). In Minkowski spacetime,
4-acceleration is orthogonal to 4-velocity: UµdUµ/dτ = 0, µ = 1, 2, 3, 4, where τ is the proper
time. We assume a 4-scalar potential Φ such that the gravitational 4-force Fµ = −m∂Φ/∂xµ. If
we consider a point mass with 4-velocity Uµ subjected to a 4-force Fµ derived from this potential,
we have UµFµ = −Uµm∂Φ/∂xµ. Writing 4-velocity as dxµ/dτ , and substituting in the latter
expression, we obtain

UµFµ = −mdxµ
dτ

∂Φ

∂xµ
= −mdΦ

dτ
= 0,

and consequently, dΦ/dτ = 0, which means that the law of motion describes the trajectory of the
passive mass m only in the trivial case of constant Φ along its worldline.

99Minkowski introduced the terms zeitartig and raumartig in (1909).
100There is little agreement on where to situate Minkowski’s work on relativity along a line

running from the intuitive to the formal. Peter Galison (1979, 89), for example, underlines
Minkowski’s visual thinking (i.e., reasoning that appeals to figures or diagrams), while Leo Corry
(1997, 275; 2004, chap. 4) considers Minkowski’s work in the context of Hilbert’s axiomatic pro-
gram for physics.

101Two spatial dimensions are suppressed in Figure 1, and lightcones are represented by broken
lines with slope equal to ±1, the units being chosen so that the propagation velocity of light is
unity (c = 1). In this model of Minkowski space, orthogonal coordinate axes appear oblique in
general, for example, the spatial axes x∗y∗z∗ are orthogonal to the tangent B∗C∗ at spacetime
point B∗ of the central line of the filament F∗ described by a particle of proper mass m∗.
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102The 4-vector OA′ in (24) has unit magnitude by definition in all inertial frames, while B∗D∗

is a timelike 4-vector tangent to the central line of F∗ at B∗. Consequently, B∗D∗ may be taken
to coincide with the temporal axis of a frame instantaneously at rest with m∗ at B∗, such that
it has only one nonzero component: the difference in proper time between the points B∗ and
D∗. It is assumed that the rest frame may be determined unambiguously for a particle in arbi-
trary motion, as asserted without proof by Minkowski in a later lecture (Minkowski 1909, § III);
subsequently, Max Born (1909, 26) remarked that any motion may be approximated by what he
called hyperbolic motion, and noted that such motion is characterized by an acceleration of con-
stant magnitude (as measured in an inertial frame). If we locate the origin of this frame at B∗,
and let D∗ = (0, 0, 0, t), then B∗D∗ = (0, 0, 0, it), and (B∗D∗)3 = −it3. Likewise in this
same frame, A = A′ = (0, 0, 0, 1), and OA′ = OA = (0, 0, 0, i). Minkowski understood the
term (OA′/B∗D∗) as the ratio (Verhältnis) of two parallel 4-vectors, an operation familiar from
the calculus of quaternions, but one not defined for 4-vectors. While modern vector systems ig-
nore vector division, in Hamilton’s quaternionic calculus the quotient of vectors is unambiguously
defined; see, for example, Tait (1882, chap. 2). Accordingly, the quotient in (24) is the ratio of
lengths, (OA′/B∗D∗) = 1/t, and the cubed ratio is t−3. The point B lies on the same constant-
time hypersurface asD∗, so we assign it the value (x, y, z, t) = (r, t). This assignment determines
the value of the 4-vector BD∗: B∗D∗ = (−x,−y,−z, 0) = (−r, 0). Since B∗ is a lightpoint of
B, we can apply (23) to obtain x2 + y2 + z2 = t2 = r2, and consequently, t3 = r3. Substitut-
ing for t3 results in (OA′/B∗D∗)3 = 1/t3 = 1/r3. The 4-vector B∗D∗ is spacelike, such that
its projection on the constant-time hypersurface orthogonal to B∗D∗ at D∗ is the ordinary vector
(−x,−y,−z) = −r. In terms of ordinary vectors and scalars measured in the rest frame of m∗,
Minkowski’s expression (24) is equivalent to Newton’s law (neglecting the gravitational constant):

−mm∗
r

r3
. (47)

Neither (24) nor (47) contains any velocity-dependent terms, while the timelike component of
Minkowski’s first law depends on the velocity of the passive mass. Newton’s law (47) thus coin-
cides with Minkowski’s first law only in the case of relative rest.

103Minkowski’s driving force may be expressed in his notation as a function of scalar products
of 4-velocities and 4-position:

−mm∗
(ww̄∗)R− (wR̄)w∗

(Rw̄∗)3(ww̄∗)
.

Here I let w and w∗ designate 4-velocity at the passive and active mass points, while R is the
associated 4-position, the parentheses denote a scalar product, and the bar indicates transposition.

104The intermediate calculations can be reconstructed as follows. Let the driving force be des-
ignated Fµ, µ = 1, 2, 3, 4. Since (OA′/B∗D∗)3 = t−3, and BD∗ = (−x, −y, −z, 0),
equations (21) and (24) yield: F1/m = d2x/dτ2 = −m∗x/(t − τ∗)3, F2/m = d2y/dτ2 =
−m∗y/(t− τ∗)3, F3/m = d2z/dτ2 = −m∗z/(t− τ∗)3.

105Minkowski omitted the intermediate calculations, which may be reconstructed in modern no-
tation as follows. Let the 4-velocity of the passive mass point be designated Uµ = (dx/dτ , dy/dτ ,
dz/dτ , idt/dτ), while the first three components of its 4-acceleration, designated Aµ, at B due to
the sourcem∗ are given by (26). From the orthogonality of 4-velocity and 4-acceleration we have:

UµAµ = −dx
dτ

m∗x

(t− τ∗)3
− dy

dτ

m∗y

(t− τ∗)3
− dz

dτ

m∗z

(t− τ∗)3
− idt
dτ

id2t
dτ2

= 0. (48)

Rearranging (48) results in an expression for the temporal component of 4-acceleration:

d2t

dτ2
= − m∗

(t− τ∗)3

(
xdx

dt
+
ydy

dt
+
zdz

dt

)
. (49)
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Differentiating (25) with respect to dt results in xdx/dt+ydy/dt+zdz/dt = (t−τ∗)d(t−τ∗)/dt,
the right-hand side of which we substitute in (49) to obtain (27).

106A young Polish physicist in Göttingen, Felix Joachim de Wisniewski later studied this case,
but with equations differing from (26) by a Lorentz factor (Wisniewski 1913a, 388). In a postscript
to the second installment of his paper (Wisniewski 1913b, 676), he employed Minkowski’s matrix
notation, becoming, with Max Born, one of the rare physicists to adopt this notation.

107The intermediate calculations were omitted by Minkowski, but figure among his research
notes (Math. Archiv 60:6, 126–127, Handschriftenabteilung, NSUB). Following the method out-
lined by Otto Dziobek (1888, 12), Minkowski began with the energy integral of Keplerian motion:(

dt

dW

)2

− 1 =
2

ℓ2

(
M

R
− C

)
, (50)

where ℓ denotes the velocity of light, M is the sum of the masses times the gravitational constant,
M = k2(m +m∗), R is the radius, and C is a constant. The left-hand side of (50) is the same
as the right-hand side of (29) for W = τ . In order to express dt/dW (which is to say dt/dτ ) in
terms of E, Minkowski considered a conic section in polar coordinates, with focus at the origin:
R = a(1− e2)/(1+ e cosφ) = a(1− e cosE), where a denotes the semi-major axis, and φ is the
true anomaly. By eliminating φ in favor of E and e, and differentiating (28), Minkowski obtained
an expression equivalent to (30).

108I insert the eccentricity e in the second term on the right-hand side, correcting an obvious
omission in Minkowski’s paper (1908, 111, eqn. 31).

109 “. . . eine Entscheidung gegen ein solches Gesetz und die vorgeschlagene modifizierte Me-
chanik zu Gunsten des Newtonschen Attraktionsgesetzes mit der Newtonschen Mechanik aus den
astronomischen Beobachtungen nicht abzuleiten sein” (Minkowski 1908, 111).

110Minkowski’s explanation of the construction of his spacetime diagram (Figure 3) may be para-
phrased in modern terminology as follows. Suppressing the z-axis, we associate two worldlines
with two point charges e1 and e. The worldline of e1 passes through the point at which we wish
to determine the field, P1. To find the retarded position of the source e, we draw the retrograde
lightcone (with broken lines) from P1, which intersects the worldline of e at P , where there is
a hyperbola of curvature ϱ with three infinitely-near points lying on the worldline of e; it has its
center at M . The coordinate origin is established at P , by letting the t-axis coincide with the tan-
gent to the worldline. A line from P1 intersects this axis orthogonally at point Q; it is spacelike,
and if its projection on a constant-time hypersurface has length r, the length of the 4-vector PQ is
r/c. The 4-vector potential has magnitude e/r and points in the direction of PQ (i.e., parallel to
the 4-velocity of e at P ). The x-axis lies parallel to QP1, such that N is the intersection of a line
through M normal to the x-axis.

111Minkowski noted four conditions on K: it is normal to the 4-velocity of e1 at P1, cKt −Kx =
1/r2, Ky = ÿ/(c2r), and Kz = 0, where r is the spacelike distance between the test charge e1 at
P1 and the advanced position Q of the source e, and ÿ is the y-component of e’s 4-acceleration at
P. For a derivation of the 4-potential and 4-force corresponding to Minkowski’s presentation, see
Pauli (1921, 644–645).

112See § 1, p. 5,as well as Heaviside (1893), and Gans (1905). Theories in which the gravitational
field is determined by equations having the form of Maxwell’s equations were later termed vector
theories of gravitation by Max Abraham (1914, 477). For a more recent version of such a theory,
see Coster & Shepanski (1969).

113Minkowski’s neglect of the differences between his two theories may explain why histori-
ans have failed to distinguish them. The principal difference between the two laws stems from
the presence of acceleration effects in the second law. By 1905 it was known that accelerated
electrons radiate energy, such that by formal analogy, a Maxwellian theory of gravitation should
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have featured accelerated point masses radiating “gravitational” energy. For a brief overview of
research performed in the first two decades of the twentieth century on the energy radiated from
accelerated electrons, see Whittaker (1953, 246).

114“In der dem Weltpostulate gemäß reformierten Mechanik fallen die Disharmonien, die zwis-
chen der Newtonschen Mechanik und der modernen Elektrodynamik gestört haben, von selbst
aus” (Minkowski 1909, § 5).

115Abraham showed that a mass set into oscillation would be unstable due to the direction of
energy flow (Norton 1992, 33). On the early history of unified field theories, see the reference in
note 12.

116Sommerfeld’s work on the Encyklopädie is discussed in an editorial note to his scientific
correspondence (Eckert & Märker 2001, 40).

117Reiff & Sommerfeld (1904), Lorentz (1904c, 1904b), Sommerfeld (1904a). The scheme
proposed by Sommerfeld differed from that published in articles 12 to 14 of the Encyklopädie
only in that the operands of scalar and vector products were no longer separated by a dot.

118Sommerfeld to Lorentz, 21 March, 1901, Eckert & Märker (2001, 191). On Sommerfeld’s
participation on the Commission see Reich (1996) and Eckert & Märker (2001, 144).

119For bibliometric data, and discussions of Sommerfeld’s role in the rise of relativity theory, see
Walter (1999a, 68–73; 1999b, 96, 108).

120See Abraham (1910), Lewis (1910a, 1910b), Varičak (1910). On Varičak’s contribution see
Walter (1999b).

121Not all of Sommerfeld’s notational choices were retained by later investigators; Laue, for
instance, preferred a notational distinction between 4-vectors and 6-vectors. For a summary of
notation used by Minkowski, Abraham, Lewis, and Laue, see Reich (1994).

122“Mit Umkehr des bei Poincaré offenbar versehentlichen Vorzeichens” (Sommerfeld 1910b,
686, note 1).

123Sommerfeld explained Figure 4 roughly as follows: two skew 4-velocities B and B0 deter-
mine a three-dimensional space, containing all the lines shown. Points OLSAP are coplanar,
while the triangles OQT and OTS, and the parallelogram LQTS all generally lie in distinct
planes. In particular, T lies outside the plane of OLSAP , and OT is orthogonal to B0. The
broken vertical line l represents the temporal axis of a frame with origin O; a spacelike plane or-
thogonal to l atO intersects the worldline ofm at pointA. The spacelike 4-vector R′ is orthogonal
to B, while S is orthogonal to B0; both R′ and S intersect the origin, while B and B0 together
form an angle ψ.

124This view was confirmed independently by the Dutch astronomer W. de Sitter, who worked
out the numbers for the one-body problem (De Sitter 1911). De Sitter found the second law
to require a post-Newtonian centennial advance in Mercury’s perihelion of 7", while the first
law required no additional advance. His figure for the second law agrees with the one given by
Poincaré(above, p. 14).

125 “In dieser und einigen anschließenden Studien möchte ich darstellen, wie merkwürdig sich
die elektrodynamischen Begriffe und Rechnungen vereinfachen, wenn man sich dabei von der
tiefsinnigen Raum-Zeit-Auffassung Minkowskis leiten läßt” (Sommerfeld 1910a, 749).

126Faced with a similar situation in his Cologne lecture of September, 1908, Minkowski simply
neglected to mention Poincaré’s contribution; see Walter (1999a, 56).

127Sommerfeld later preferred Gustav Mie’s field theory of gravitation. Such an approach was
more promising than that of Poincaré and Minkowski, which grasped gravitation “to some extent
as action at a distance” (Sommerfeld 1913, 73).

128“Die geometrische Systematik ist jetzt hyper-minkowskisch” (Sommerfeld to Wien, 11 July,
1910; Eckert & Märker 2001, 388).
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129Einstein to Sommerfeld, July, 1910, Klein (1993, 243–247); Eckert & Märker (2001, 386–
388). In light of Einstein and Laub’s earlier dismissal of Minkowski’s formalism (see above, 21,
p. 26), Sommerfeld naturally supposed that Einstein would disapprove of his system, prompting
the protest: “Wie können Sie denken, dass ich die Schönheit einer solchen Untersuchung nicht zu
schätzen wüsste?”

130“[Minkowski] hat auf seine Darstellung vielleicht ebenso viel Wert gelegt, wie auf ihren In-
halt. Darum glaube ich nicht, daß der Zugang zu seiner Gedankenwelt erleichtert wird, wenn sie
von einer ungeheuren [sic] Fülle von Formeln überschüttet wird” (Born 1914).

131By the end of 1911 Born had already acknowledged that, despite its “formal simplicity and
greater generality compared to the tradition of vectorial notation,” Minkowski’s calculus was “un-
able to hold its ground in mathematical physics” (Born 1912, 175).
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