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T HE IMPORTANCE OF THE THEORY OF RELATIVITYfor twentieth-century physics,
and the appearance of the Göttingen mathematician Hermann Minkowski
at a turning point in its history have both attracted significant historical

attention. The rapid growth in scientific and philosophicalinterest in the principle
of relativity has been linked to the intervention of Minkowski by Tetu Hirosige,
who identified Minkowski’s publications as the turning point for the theory of rel-
ativity, and gave him credit for having clarified its fundamental importance for all
of physics (Hirosige 1968: 46; 1976: 78). Lewis Pyenson has placed Minkowski’s
work in the context of a mathematical approach to physics popular in Göttingen,
and attributed its success to the prevalence of belief in a neo-Leibnizian notion of
pre-established harmony between pure mathematics and physics (Pyenson 1985,
1987: 95). The novelty to physics of the aesthetic canon embodied in Minkowski’s
theory was emphasized by Peter Galison (1979), and several scholars have clari-
fied technical and epistemological aspects of Minkowski’s theory.1 In particular,
the introduction of sophisticated mathematical techniques to theoretical physics
by Minkowski and others is a theme illustrated by Christa Jungnickel and Russell
McCormmach.2

In what follows, we address another aspect of Minkowski’s role in the history
of the theory of relativity: his disciplinary advocacy. Minkowski’s 1908 Cologne
lecture “Raum und Zeit” (Minkowski 1909) may be understood as an effort to ex-

1 On Minkowski’s role in the history of relativity see also Illy 1981 and Pyenson 1987. Many
references to the primary and secondary literature on the theory of relativity may be found in Miller
1981 and Paty 1993. Pauli 1958 remains an excellent guide to the primary literature.

2 McCormmach 1976; Jungnickel & McCormmach 1986: II, 334–347.
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tend the disciplinary frontier of mathematics to include the principle of relativity.
We discuss the tension created by a mathematician’s intrusion into the specialized
realm of theoretical physics, and Minkowski’s strategy to overcome disciplinary
obstacles to the acceptance of his work. The effectiveness of his approach is
evaluated with respect to a selection of responses, and related to trends in biblio-
metric data on disciplinary contributions to non-gravitational theories of relativity
through 1915.

1. Minkowski’s authority in mathematics and physics

At the time of the meeting of the German Association in late September 1908,
Minkowski was recognized as an authority on the theory of relativity nowhere
outside of the university town of G̈ottingen. The structure and content of Min-
kowski’s lecture, we will see later, was in many ways a function of a perceived
deficit of credibility. In order to understand this aspect ofMinkowski’s lecture,
we first examine how Minkowski became acquainted with the electrodynamics of
moving bodies.

Around 1907, Minkowski’s scientific reputation rested largely upon his con-
tribution to number theory.3 Yet Minkowski was also the author of an article on
capillarity (1906) in the authoritativeEncyklopädie der mathematischen Wissen

schaften, granting him a credential in the domain of mechanics and mathematical
physics. In addition, Minkowski had lectured on capillarity, potential theory, and
analytical mechanics, along with mathematical subjects such as Analysis Situs
and number theory at Zurich Polytechnic, where Einstein, Marcel Grossmann and
Walter Ritz counted among his students; he also lectured on mechanics and elec-
trodynamics (among other subjects) in Göttingen, where he held the third chair in
mathematics, created for him at David Hilbert’s request in 1902.4

In Göttingen, Minkowski took an interest in a subject strongly associated with
the work of many of his new colleagues: electron theory. An early manifestation
of this interest was Minkowski’s co-direction of a seminar on the subject with
his friend Hilbert, plus Gustav Herglotz and Emil Wiechert,which met during
the summer semester of 1905.5 While Lorentz’s 1904 paper (with a form of the
transformations now bearing his name) was not on the syllabus, and Einstein’s
1905 paper had not yet appeared, one of the students later recalled that Minkowski
had hinted that he was engaged with the Lorentz transformations.6

Minkowski was also busy with his article on capillarity, however, and for the
next two years there is no trace of his engagement with the theory of relativity. In
October 1907, Minkowski wrote to Einstein to request an offprint of hisAnnalen

3 Minkowski published his lectures on Diophantine analysis in Minkowski 1907a.

4 Copies of Minkowski’s manuscript notes of these lectures are in the Niels Bohr Library, Minkowski
Papers, Boxes 7, 8 and 9.

5 On the G̈ottingen electron theory seminar, see Pyenson 1985: 102.

6 Undated manuscript, Niedersächsische Staats- und Universitätsbibliothek, HilbertNachlaß 570/9;
Born 1959: 682.



Minkowski, Mathematicians, and the Mathematical Theory ofRelativity 47

article on the electrodynamics of moving bodies, for use in his seminar on the
partial differential equations of physics, jointly conducted by Hilbert.7 During the
following Easter vacation, he gave a short series of lectures on “New Ideas on the
Basic Laws of Mechanics” for the benefit of science teachers.8

In what seem to be notes to these holiday lectures, Einstein’s knowledge of
mathematics was subject to criticism. Minkowski reminded his audience that
he was qualified to make this evaluation, since Einstein had him to thank for
his education in mathematics. From Zurich Polytechnic, Minkowski added, a
complete knowledge of mathematics could not be obtained.9

This frank assessment of Einstein’s skills in mathematics,Minkowski explained,
was meant to establish his right to evaluate Einstein’s work, since he did not
know how much his authority carried with respect to “the validity of judgments in
physical things,”which he wanted “now to submit.” A patternwas established here,
in which Minkowski would first suggest that Einstein’s work was mathematically
incomplete, and then call upon his authority in mathematicsin order to validate
his judgments in theoretical physics. While Minkowski implicitly recognized
Einstein’s competence in questions of physics, he did not yet appreciate how
much Europe’s leading physicists admired the work of his former student.10 Even
in his fief of Göttingen, Minkowski knew he could not expect any authority to
be accorded to him in theoretical physics, yet this awareness of his own lack
of credentials in physics did not prevent him from lecturingon the principle of
relativity.

While the scientific world had no real means of judging Minkowski’s compe-
tence in theoretical physics due to the paucity of relevant publications, Minkowski
himself did not consider his knowledge in physics to be extensive. It is for this
reason that he sought an assistant capable of advising him onphysical matters, and
when Max Born–a former student from the electron theory seminar–wrote him
from Breslau (now Wroc law, Poland) for help with a technical problem, he found

7 Minkowski to Einstein, 9 October 1907 (EinsteinCP5: doc. 62); course listing inPhysikalische
Zeitschrift 8 (1907): 712. Fragmentary notes by Hermann Mierendorff fromthis seminar show a
discussion of Lorentz’s electrodynamics of moving media, see Nieders̈achsische Staats- und Univer-
sitätsbibliothek, HilbertNachlaß 570/5; Pyenson 1985: 83. During the same semester, Minkowski
introduced the principle of relativity into his lectures onthe theory of functions (“Funktionentheorie.”
Minkowski Papers: Box 9, Niels Bohr Library).

8 “Neuere IdeenÜber die Grundgesetze der Mechanik,” held in Göttingen from 21 April to 2 May,
seeL’Enseignement Mathématique 10 (1908): 179.

9 Undated manuscript, Niedersächsische Staats- und Universitätsbibliothek, Math. Archiv 60: 4, 52.
Minkowski’s uncharitable assessment of mathematics at Zurich Polytechnic belied the presence on the
faculty of his friend Adolf Hurwitz, a member of the mathematical elite, and a lecturer of great repute.
Graduates included Marcel Grossmann, L.-Gustave du Pasquier and Minkowski’s doctoral student
Louis Kollros, all of whom were called upon to teach university mathematics upon completion of their
studies. In recollections of his years as Einstein’s classmate, Kollros wrote that there was “almost too
much mathematics” at Zurich Polytechnic (Kollros 1956: 273). Minkowski’s remark that Einstein’s
mathematical knowledge was incomplete may have been based on the fact that, unlike his classmates,
Einstein did not elect to pursue graduate studies in mathematics, after obtaining the diploma from
Polytechnic.

10 In a letter of 18 October 1908, Minkowski wrote to Robert Gnehm of his satisfaction in learning—
during the Cologne meeting of scientists and physicians—how much Einstein’s work was admired by
the likes of Walther Nernst, Max Planck and H. A. Lorentz (Seelig 1956: 131–132).
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a suitable candidate.
Initially attracted to mathematics, Born heard lectures byLeo Königsberger in

Heidelberg, and Adolf Hurwitz in Zurich, and later considered Hurwitz’s private
lectures as the high point of his student career. In Göttingen, Born obtained a
coveted position as Hilbert’s private assistant, and begana doctoral dissertation
on Bessel functions under Hilbert’s direction. When he abandoned the topic, as
Born recalled in old age, Hilbert laughed and consoled him, saying he was much
better in physics.11 In the same year, Born attended Hilbert and Minkowski’s
electron theory seminar, along with Max Laue and Jakob Laub,among others
(Born 1959: 682; Pyenson 1985: 102). Profoundly influenced by what he learned
in this seminar, and deeply devoted to both Hilbert and Minkowski, Born was not
permitted to write a dissertation on electron theory, although the idea appealed to
him (Born 1959: 684). Felix Klein obliged him to write a dissertation on elasticity
theory, but in order to avoid having “the great Felix” as an examiner, Born took up
Karl Schwarzschild’s suggestion to prepare for the oral examination in astronomy
(Born 1906, 1968: 20–21). After defendinghis doctoral dissertation on 14 January
1907, Born spent six months in Cambridge with Joseph Larmor and J. J. Thomson
before returning to Breslau, where the young theoretical physicists Stanislaus
Loria and Fritz Reiche brought Einstein’s 1905Annalen paper on relativity to his
attention (Born 1959: 684).

In studying relativity with Reiche, as Born recounted later, he encountered some
difficulties. He formulated these in a letter to Minkowski, seeking his former
teacher’s advice. Minkowski’s response to Born’s letter was a great surprise,
for instead of the requested technical assistance, Minkowski offered him the
possibility of an academic career. Minkowski wrote that he had been working on
the same problem as Born, and that he “would like to have a young collaborator
who knew something of physics, and of optics in particular” (Born 1978: 130).12

Besides mathematics, Born had studied physics in Göttingen, attending Voigt’s
“stimulating” lectures on optics and an advanced course on optical experimentation
(Born 1968: 21). It was just this background in optics that Minkowski lacked, and
he looked to Born to guide him through unknown territory. In return, Minkowski
promised Born he would open the doors to an academic career. The details were
to be worked out when they met at the meeting of the German Association of
Scientists and Physicians, later that year in Cologne (Born1978: 130).13

In April 1908, Minkowski published a technically accomplished paper on the
electromagnetic processes in moving bodies (“Die Grundgleichungen f̈ur die elec-
tromagnetischen Vorg̈ange in bewegten K̈orpern,” hereafterGrundgleichungen).

11 Transcript of an oral interview with Thomas S. Kuhn, 18 October 1962, Archives for History of
Quantum Physics, p. 5.

12 According to another version, the manuscript sent to Minkowski showed a new way of calculating
the electromagnetic mass of the electron, described by Bornas a combination of “Einstein’s ideas with
Minkowski’s mathematical methods” (Born 1968: 25).

13 Minkowski’s premature death prevented him from personallyfulfilling his obligation to Born,
but his G̈ottingen colleagues accorded Born the venia legendi in theoretical physics, on Voigt’s
recommendation (Born 1978: 136).
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In this essay, Minkowski wrote the empty-space field equations of relativistic elec-
trodynamics in four-dimensional form, using Arthur Cayley’s matrix calculus. He
also derived the equations of electrodynamics of moving media, and formulated
the basis of a mechanics appropriate to four-dimensional space with an indefi-
nite squared interval. Minkowski’s study represented the first elaboration of the
principle of relativity by a mathematician in Germany.

Soon after its publication, theGrundgleichungen sustained restrained com-
ment from Minkowski’s former students Albert Einstein and Jakob Laub (1908a,
1908b). These authors rejected out of hand the four-dimensional apparatus of
Minkowski’s paper, the inclusion of which, they wrote, would have placed “rather
great demands” on their readers (1908a: 532). No other reaction to Minkowski’s
work was published before the Cologne meeting.

By the fall of 1908, Minkowski had spoken publicly of his views on relativity
on several occasions, but never outside of Göttingen. The annual meeting of
the German Association was Minkowski’s first opportunity tospeak on relativity
before an elite international audience of physicists, mathematicians, astronomers,
chemists and engineers. At no other meeting could a scientist in Germany interact
with other professionals working in disciplines outside ofhis own.

The organization of the various disciplinary sections of the annual meeting of the
German Association fell to the corresponding professionalsocieties (Forman 1967:
156). For example, the German Physical Society organized the physics section,
and the German Society of Mathematicians managed the mathematics section.
For the latter section, the theme of discussion was announced in late April by the
society’s president, Felix Klein. In a call for papers, Klein encouraged authors
to submit works especially in the area of mechanics. Prior tothe announcement,
however, Klein must have already arranged at least one contribution in mechanics,
since he added a teaser, promising an “expert aspect” of a recent investigation in
this area.14 It is tempting to identify this as a forward reference to Minkowski’s
lecture, a draft of which predates Klein’s communication bya few days. The
lecture was to be the first talk out of seven in the mathematicssection, which
doubled as a session of the German Society of Mathematicians.15

2. The Cologne lecture

The G̈ottingen archives contain four distinct manuscript draftsof Minkowski’s
Cologne lecture, none of which corresponds precisely to either of the two printed
versions of the lecture in the original German.16 Unless stipulated otherwise, we
refer here to the longer essay published posthumously in both thePhysikalische

14
Jahresbericht der deutschen MathematikerVereinigung 17 (1908): 61, dated 26 April 1908.

15 Most of the lectures in the first section were published in volume 18 of theJahresbericht der
deutschen MathematikerVereinigung. Shortly after the end of the First World War, the German
Physical Society also held session at meetings of the GermanAssociation (see Forman 1967: 156).

16 Nieders̈achsische Staats- und Universitätsbibliothek, Math. Arch. 60: 2 and 60: 4. An early draft
is dated 24 April 1908 (60: 4, folder 1, p. 66.); the other drafts are undated.
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Zeitschrift and theJahresbericht der deutschenMathematikerVereinigung in early
1909.

From the outset of his lecture, Minkowski announced that he would reveal a
radical change in the intuitions of space and time:

Gentlemen! The conceptions of space and time which I would like to
develop before you arise from the soil of experimental physics. Therein
lies their strength. Their tendency is radical. From this hour on, space by
itself and time by itself are to sink fully into the shadows and only a kind
of union of the two should yet preserve autonomy.

First of all I would like to indicate how, [starting] from themechanics
accepted at present, one could arrive through purely mathematical consid-
erations at changed ideas about space and time.17 (Minkowski 1909: 75)

The evocation of experimental physics was significant in thefirst sentence of
Minkowski’s lecture, and it was deceptive. In what followed, Minkowski would
refer to experimental physics only once, to invoke the null result of Albert A.
Michelson’s optical experiment to detect motion with respect to the luminiferous
ether. Otherwise, Minkowski kept his promise of a “rein mathematische” expośe,
devoid of experimental considerations. A purely theoretical presentation enabled
Minkowski to finesse the recent well-known experimental results purporting to
disconfirm relativity theory, obtained by Walter Kaufmann.18

Less illusory than the mention of experimental physics was Minkowski’s an-
nouncement of a radical change in conceptions of space and time. That this
revelation was local and immediate, is signaled by the phrase “from this hour on”
[von Stund’ an]. Here it was announced that a union of space and time was to be
revealed, and for the first time. This was a rhetorical gesture (all of the results
presented in the Cologne lecture had been published in theGrundgleichungen),
but it was an effective one, because the phrase in question became emblematic of
the theory of relativity in broader circles.

It may be noted from the outset that the claims Minkowski madefor his theory
fell into two categories. In one category were Minkowski’s claims for scientific
priority, which concerned the physical, mathematical and philosophical aspects of
his theory of relativity. In what follows, we will concentrate on the second category
of claims, which weremetatheoretical in nature. The latter claims concerned the
theory’s type, not its constituent elements. Claims of the second sort, all having
to do with the geometric nature of the theory, reinforced those of the first sort.

17 “M. H.! Die Anschauungen̈uber Raum und Zeit, die ich Ihnen entwickeln möchte, sind auf
experimentell-physikalischem Boden erwachsen. Darin liegt ihre Sẗarke. Ihre Tendenz ist eine
radikale. Von Stund’ an sollen Raum für sich und Zeit f̈ur sich v̈ollig zu Schatten herabsinken und nur
noch eine Art Union der beiden soll Selbständigkeit bewahren. Ich m̈ochte zun̈achst ausf̈uhren, wie
man von der gegenẅartig angenommen Mechanik wohl durch eine rein mathematische Überlegung
zu ver̈anderten Ideen̈uber Raum und Zeit kommen könnte.”
18 The empirical adequacy of the “Lorentz-Einstein” theory had been challenged by Walter Kaufmann
in 1905, on the basis of his measurements of the magnetic deflection of cathode rays (see Miller 1981
and Hon 1995). Two days after Minkowski’s lecture, Alfred Bucherer announced to the physical
section the results of his deflection experiments, which contradicted those of Kaufmann and confirmed
the expectations of the Lorentz-Einstein theory (Bucherer1908). In the discussion of this lecture,
Minkowski expressed joy in seeing the “monstrous” rigid electron hypothesis experimentally defeated
in favor of the deformable electron of Lorentz’s theory (seeBucherer 1908: 762).
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The opening remarks provide an example: the allusion to changed ideas about
space and time belongs to the first sort, while the claim of a purely mathematical
development is of the second kind.

In order to demonstrate the difference between the old view of space and time
and the new one, Minkowski distinguished two transformation groups with respect
to which the laws of classical mechanics were covariant.19 Considering first the
same zero point in time and space for two systems in uniform translatory motion,
he noted that the spatial axesx , y, z could undergo an arbitrary rotation about the
origin. This corresponded to the invariance in classical mechanics of the sum of
squaresx2 + y2 + z2, and was a fundamental characteristic of physical space, as
Minkowski reminded his audience, that did not concern motion. Next, the second
group was identified with the transformations:

x ′ = x + αt, y ′ = y + βt, z′ = z + γ t, t ′ = t .

Thus physical space, Minkowski pointed out, which one supposed to be at rest,
could in fact be in uniform translatory motion; from physical phenomena no
decision could be made concerning the state of rest (1909: 77).

t

x'
x

 vt

 x, x'

•
P

t'

Figure 1. Classical displacement diagram.

After noting verbally the distinction between these two groups, Minkowski
turned to the blackboard for a graphical demonstration. He drew a diagram to
demonstrate that the above transformations allowed one to draw the time axis
in any direction in the half-spacet > 0. While no trace has been found of
Minkowski’s drawing, it may have resembled the one published later by Max
Born and other expositors of the theory of relativity (see Figure 1).20 This was the

19 Minkowski introduced the use ofcovariance with respect to the Lorentz transformations in Min-
kowski 1908a: 473. In the Cologne lecture, the terminvariant was employed in reference to both
covariant and invariant expressions.

20 Born 1920. A similar diagram appeared earlier in a work by Vito Volterra, who attributed it to a
lecture given in Rome by Guido Castelnuovo (Volterra 1912: 22, fig. 5).
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occasion for Minkowski to introduce a spate of neologisms (Minkowski 1909: 76–
77): Weltpunkt, Weltlinie andWeltachse, as well as new definitions of the terms
Substanz [‘something perceptible’], andWelt [the manifold of all conceivable
pointsx , y, z, t ].

At this point, Minkowski raised the question of the relationbetween these two
groups, drawing special attention to the characteristics of spatial orthogonality and
an arbitrarily-directed temporal axis. In response, he introduced the hyperbolic
equation:

c2t2 − x2 − y2 − z2 = 1,

wherec was an unspecified, positive-valued parameter (Minkowski 1909: 77).
Suppressing two dimensions iny andz, he then showed how this unit hypersurface
might be used to construct a group of transformationsGc, once the arbitrary
displacements of the zero point were associated with rotations about the origin.
The figure obtained was introduced on a transparent slide, showing two pairs of
symmetric axes.21

Figure 2. Minkowski’s space-time and length-contraction diagrams.

Minkowski’s hand-colored, transparent slide [10× 15 cm], Nieders̈achsische Staats- und
Universiẗatsbibliothek, Math. Archiv 60: 2, is reproduced here courtesy of the Hand-
schriftenabteilung.

Minkowski constructed the figure using the upper branch of the two-branched
unit hyperbolac2t2−x2 = 1 to determine the parallelogramOA′B ′C ′, from which
the x ′ and t ′ axes were established (see Figure 2, left, and the Appendix). The

21 Similar figures appear in Minkowski 1909: 77.
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relation between this diagram and the one corresponding to classical mechanics
he pointed out directly: as the parameterc approached infinity,

this special transformation becomes one in which thet ′ axis can have an
arbitrary upward direction, andx ′ approaches ever closer tox.22 (Minkowski
1909: 78)

In this way, the new space-time diagram collapsed into the old one, in a lovely
graphic recovery of classical kinematics.23

The limit-relation between the groupGc and the group corresponding to clas-
sical mechanics(G∞) called forth a comment on the history of the principle of
relativity. Minkowski observed that in light of this limit-relation, and

sinceGc is mathematically more intelligible thanG∞, a mathematician
would well have been able, in free imagination, to arrive at the idea that in
the end, natural phenomena actually possess an invariance not with respect
to the groupG∞, but rather to a groupGc, with a certain finite, but in
ordinary units of measurementextremely large [value of]c. Such a premo-
nition would have been an extraordinary triumph for pure mathematics.24

(Minkowski 1909: 78)

To paraphrase, it was no more than a fluke of history that a nineteenth-century
mathematician did not discover the role played by the groupGc in physics, given
its greater mathematical intelligibility in comparison tothe groupG∞. In other
words, the theory of relativity was not a product of pure mathematics, although
it could have been. Minkowski openly recognized the role—albeit a heuristic
one—of experimental physics in the discovery of the principle of relativity. All
hope was not lost for pure mathematics, however, as Minkowski continued:

While mathematics displays only more staircase-wit here, it still has the
satisfaction of realizing straight away, thanks to fortunate antecedents and
the exercised acuity of its senses, the fundamental consequences of such a
reformulation of our conception of nature.25 (Minkowski 1909: 78)

Minkowski conceded that, in this instance, mathematics could only display wis-
dom after the fact, instead of a creative power of discovery.Again he stressed the
mathematician’s distinct advantage over members of other scientific disciplines in
seizing the deep consequences of the new theoretical view.

22 “jene spezielle Transformation in der Grenze sich in eine solche verwandelt, wobei diet ′-Achse
eine beliebige Richtung nach oben haben kann undx ′ immer genauer sich anx ann̈ahert.”
23 The elegance of Minkowski’s presentation of relativistic kinematics with respect to classical
kinematics was admired and appreciated by many, including Max Planck, who may have been in the
audience. See Planck 1910b: 42.
24 “Bei dieser Sachlage, und daGc mathematisch verständlicher ist alsG∞, hätte wohl ein Mathe-
matiker in freier Phantasie auf den Gedanken verfallen können, daß am Ende die Naturerscheinungen
tats̈achlich eine Invarianz nicht bei der GruppeG∞, sondern vielmehr bei einer GruppeGc mit bes-
timmtem endlichen, nur in den gewöhnlichen Maßeinheiten̈ausßerst großen c besitzen. Eine solche
Ahnung ẅare ein außerordentlicher Triumph der reinen Mathematik gewesen.”
25 “Nun, da die Mathematik hier nur mehr Treppenwitz bekundet,bleibt ihr doch die Genugtuung,
daß sie dank ihren glücklichen Antezedenzien mit ihren in freier Fernsicht geschärften Sinnen die
tiefgreifenden Konsequenzen einer solcher Ummodelung unserer Naturauffassung auf der Stelle zu
erfassen vermag.” We translate “Treppenwitz” literally as“staircase-wit,” although the term was taken
by Giuseppe Gianfranceschi and Guido Castelnuovo to mean that mathematics had not accomplished
the first step: “Qui veramente la matematica non ha compiuro il primo passo. . . ” (see Minkowski
1909: 338).
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2.1. MINKOWSKI THE MATHEMATICIAN

Minkowski’s repetitive references to mathematicians and pure mathematics de-
mand an explanation. Minkowski was a mathematician by training and profession.
This fact is hardly obscure, but Minkowski’s reasons for stressing his point may
not be immediately obvious. Two suggestions may be made here.

In the first place, we believe that Minkowski and his contemporaries saw his
work on relativity as an expansion of the disciplinary frontier of mathematics.
Furthermore, this expansion was naturally regarded by someGerman physicists
as imperialist, occurring at the expense of the nascent, growing sub-discipline of
theoretical physics.26 A desire to extend mathematical dominion over the newly-
discovered region of relativistic physics would explain why Minkowski chose
neither to describe his work as theoretical physics, nor to present himself as a
theoretical (or mathematical) physicist.

Secondly, in relation to this,we want to suggest that Minkowski was aware of the
confusion that his ideas were likely to engender in the mindsof certain members
of his audience. In effect, Minkowski’s response to this expected confusion was
to reassure his audience, by constantly reaffirming what they already knew to be
true: he, Minkowski, was a mathematician.27

Minkowski’s wide reputation and unquestioned authority inpure mathematics
created a tension, which is manifest throughout his writings on relativity. As long
as Minkowski signed his work as a mathematician, any theory he produced lacked
the “authenticity” of a theory advanced by a theoretical physicist. No “guarantee”
of physical relevance was attached to his work—on the contrary. With very
few exceptions (the article on capillarity, for example), nothing Minkowski had
published was relevant to physics.

Acutely aware of the cross-disciplinary tension created byhis excursion into
theoretical physics, Minkowski made two moves toward its alleviation. The first
of these was to assert, at the outset of the lecture, that the basis of his theory was in
experimental physics. The second was to display the physico-theoretical pedigree
of the principle of relativity, aspects of which had been developed by the paragon
of theoretical physicists, H. A. Lorentz, and by the lesser-known patent clerk and
newly-named lecturer in theoretical physics in Bern, Albert Einstein.

Up to this point in his lecture, Minkowski had presented a new, real geometric
interpretation of a certain transformation inx , y, z andt, which formed a group
denoted byGc. This group entertained a limit relation with the group under which
the laws of classical mechanics were covariant. From this point on, until the
end of the first section of his lecture, Minkowski presented what he, and soon

26 The entry of mathematicians into the field of relativity was described by Einstein as an invasion, as
Sommerfeld later recalled (1949: 102). To counterbalance what he found “extraordinarily compelling”
[ungemein Zwingendes] in Minkowski’s theory, Wien stressed the importance to thephysicist of
experimental results, in contrast to the “aesthetic factors” that guided the mathematician (1909a: 39).
On the emergence of theoretical physics in Germany, see Stichweh 1984; Jungnickel & McCormmach
1986; Olesko 1991. The term “disciplinary frontier” is borrowed from Rudolf Stichweh’s writings.

27 This is further suggested by the sociologist Erving Goffman’s analysis of the presentation of
self. Goffman noted that individuals present a different “face” to different audiences. The audience
reserves the right to take the individual at his occupational face value, seeing in this a way to save time
and emotional energy. According to Goffman, even if an individual were to try to break out of his
occupational role, audiences would often prevent such action (see Goffman 1959: 57).
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a great number of scientists, considered to behis theory.28 What was this new
theory? Once a system of referencex , y, z, t was determined from observation,
in which natural phenomena agreed with definite laws, the system of reference
could be changed arbitrarily without altering the form of these laws, provided that
the transformation to the new system conformed to the groupGc. As Minkowski
put it:

The existence of the invariance of the laws of nature for the groupGc would
now be understood as follows: from the entirety of natural phenomena we
can derive, through successively enhanced approximations, an ever more
precise frame of referencex, y, z and t , space and time, by means of
which these phenomena can then be represented according to definite laws.
This frame of reference, however, is by no means uniquely determined
by the phenomena.We can still arbitrarily change the frame of reference
according to the transformations of the group termed Gc without changing
the expression of the laws of nature.29 (Minkowski 1909: 78–79)

For anyone who might have objected that others had already pointed this out,
Minkowski offered an interpretation of his theory on the space-time diagram.30

We can, for example, also designate time [as]t ′, according to the figure
described. However, in connection with this, space must then necessarily
be defined by the manifold of three parametersx ′, y, z, on which physical
laws would now be expressed by means ofx ′, y, z, t ′ in exactly the same
way as withx, y, z, t . Then from here on, we would no longer havespace in
the world, but endlessly many spaces; analogously, endlessly many planes
exist in three-dimensional space. Three-dimensional geometry becomes a
chapter of four-dimensional physics. You realize why I saidat the outset:
space and time are to sink into the shadows; only a world in andof itself
endures.31 (Minkowski 1909: 79)

The emphasis on space was no accident, as Minkowski presented the notion of
“endlessly many spaces” as his personal contribution, in analogy to Einstein’s
concept of relative time. The grandiose announcement of theend of space and

28 Examples of the identification of this passage as Minkowski’s principle of relativity are found in
several reports, such as Volkmann 1910: 148, and Wiechert 1915: 55.
29 “Das Bestehen der Invarianz der Naturgesetze für die bez̈ugliche GruppeGc würde nun so zu
fassen sein: Man kann aus der Gesamtheit der Naturerscheinungen durch sukzessiv gesteigerte Ap-
proximationen immer genauer ein Bezugsystemx, y, z und t , Raum und Zeit, ableiten, mittels dessen
diese Erscheinungen sich dann nach bestimmten Gesetzen darstellen. Dieses Bezugsystem ist dabei
aber durch die Erscheinungen keineswegs eindeutig festgelegt. Man kann das Bezugsystem noch
entsprechend den Transformationen der genannten Gruppe Gc beliebig verändern, ohne daß der
Ausdruck der Naturgesetze sich dabei verändert.”
30 Neither Einstein, nor Lorentz, nor Poincaré attended the Cologne meeting, although in late February
Einstein wrote to Johannes Stark of his intention to do so (EinsteinCP5: doc. 88).
31 “Z. B. kann man der beschriebenen Figur entsprechend aucht ′ Zeit benennen, muß dann aber im
Zusammenhange damit notwendig den Raum durch die Mannigfaltigkeit der drei Parameterx ′, y, z
definieren, wobei nun die physikalischen Gesetze mittelsx ′, y, z, t ′ sich genau ebenso ausdrücken
würden, wie mittelsx, y, z, t . Hiernach ẅurden wir dann in der Welt nicht mehrden Raum, sondern
unendlich viele R̈aume haben, analog wie es im dreidimensionalen Raume unendlich viele Ebenen
gibt. Die dreidimensionale Geometrie wird ein Kapitel der vierdimensionalen Physik. Sie erkennen,
weshalb ich am Eingange sagte, Raum und Zeit sollen zu Schatten herabsinken und nur eine Welt an
sich bestehen.”
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time served as a frame for the enunciation of Minkowski’s principle of relativity.32

Rhetorical gestures such as this directed attention to Minkowski’s theory; its
acceptance by the scientific community, however, may be seento depend largely
upon the presence of two elements: empirical adequacy, claimed by Minkowski
at the opening of the lecture, and the perception of an advantage over existing
theories. Minkowski went on to address in turn the work of twoof his predecessors,
Lorentz and Einstein. Before discussing Minkowski’s exposé of their work,
however, we want to consider briefly the work of a third precursor, whose name
was not mentioned at all in this lecture: Henri Poincaré.

2.2. WHY DID MINKOWSKI NOT MENTION POINCARÉ?

Widely acknowledged at the turn of the century as the world’sforemost mathe-
matician, Henri Poincaré developed Lorentz’s theory of electrons to a state for-
mally equivalent to the theory published at the same time by Einstein.33 Poincaŕe
and Einstein both recognized that the Lorentz transformations (so named by
Poincaŕe) form a group; Poincaré alone exploited this knowledge in the search
for invariants.34 Among Poincaŕe’s insights relating to his introduction of a fourth
imaginary coordinate int

√
−1 (wherec = 1), was the recognition of a Lorentz

transformation as a rotation about the origin in four-dimensional space, and the
invariance of the sum of squares in this space, which he described as a measure of
distance (1906: 542). This analysis then formed the basis ofhis evaluation of the
possibility of a Lorentz-covariant theory of gravitation.

It is unlikely that the omission of Poincaré’s name was a simple oversight on
Minkowski’s part. The printed version of Minkowski’s lecture, the corrected
proofs of which were mailed only days before a fatal attack ofappendicitis, was
the result of careful attention in the months following the Cologne meeting.35

This suggests that both the structure of the paper and the decision to include (or
exclude) certain references were the result of deliberate choices on the part of the
author.

A great admirer of Poincaré’s science, Minkowski was familiar with his long
paper on the dynamics of the electron, having previously cited it in theGrundglei
chungen, in the appendix on gravitation. In an earlier, then-unpublished lecture to
the G̈ottingen Mathematical Society on the principle of relativity, delivered on 5
November 1907, Minkowski went so far as to portray Poincaré as one of the four
principal authors of the principle of relativity:

32 In Göttingen, Minkowski’s lofty assertions were the target of student humor, as witnessed by a
student parody of the course guide, see Galison 1979: 111, n.69. Minkowski, whose lectures were
said by Born (1959: 682) to be punctuated by witty remarks, undoubtedly found this amusing. His
sharp sense of humor is also evident in the correspondence with Hilbert (see R̈udenberg & Zassenhaus
1973).

33 One sign of Poincaré’s mathematical preeminence was the Bolyai Prize, awardedhim by a unani-
mous jury in 1905. For studies of Poincaré’s mathematical contributions to relativity theory see Cuvaj
1968 and Miller 1973. Poincaré’s critique of fin-de-sìecle electrodynamics is discussed in Darrigol
1995.

34 Poincaŕe proved that the Lorentz transformations form a group in a letter to Lorentz (reproduced in
Miller 1980), and later pointed out to students the group nature of the parallel velocity transformations
(see the notes by Henri Vergne of Poincaré’s 1906/7 lectures, Poincaré 1906/7: 222).

35 On Minkowski’s labors see Hilbert 1909a: xxix.
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Concerning the credit to be accorded to individual authors,stemming from
the foundations of Lorentz’s ideas, Einstein developed theprinciple of rel-
ativity more distinctly [and] at the same time applied it with particular
success to the treatment of special problems in the optics ofmoving media,
[and] ultimately [was] also the first to draw conclusions concerning the
variability of mechanical mass in thermodynamic processes. A short while
later, and no doubt independently of Einstein, Poincaré extended [the prin-
ciple of relativity] in a more mathematical study to Lorentzelectrons and
their status in gravitation. Finally, Planck sought the basis of a dynamics
grounded on the principle of relativity.36 (Minkowski 1907b: 16–17)

Following their appearance in this short history of the principle of relativity, the
theoretical physicists Lorentz, Einstein and Max Planck all made it into Minkow-
ski’s Cologne lecture, but the more mathematical Poincaré was left out.

At least one theoretical physicist felt Minkowski’s exclusion of Poincaŕe in
“Raum und Zeit” was unfair: Arnold Sommerfeld. In the notes he added to a
1913 reprint of this lecture, Sommerfeld attempted to rightthe wrong by making
it clear that a Lorentz-covariant law of gravitation and theidea of a four-vector
had both been proposed earlier by Poincaré.

Among the mathematicians following the developments of electron theory,
many considered Poincaré as the founder of the new mechanics. For instance, the
editor ofActa Mathematica, Gustav Mittag-Leffler, wrote to Poincaré on 7 July
1909 of Stockholm mathematician Ivar Fredholm’s suggestion that Minkowski
had given Poincaré’s ideas a different expression:

You undoubtedly know the pamphlet by Minkowski, “Raum und Zeit,”
published after his death, as well as the ideas of Einstein and Lorentz on
the same question. Now, M. Fredholm tells me that you have touched
upon similar ideas before the others, while expressing yourself in a less
philosophical, more mathematical manner.37 (Mittag-Leffler 1909)

It is unknown if Poincaŕe ever received this letter. Like Sommerfeld,Mittag-Leffler
and Fredholm reacted to the omission of Poincaré’s name from Minkowski’s
lecture.

The absence of Poincaré from Minkowski’s speech was remarked by leading
scientists, but what did Poincaré think of this omission? His first response, in
any case, was silence. In the lecture Poincaré delivered in G̈ottingen on the new
mechanics in April 1909, he did not see fit to mention the namesof Minkowski
and Einstein (Poincaré 1910a). Yet where his own engagement with the princi-
ple of relativity was concerned, Poincaré became more expansive. In Berlin the

36 “Was das Verdienst der einzelnen Autoren angeht, so rühren die Grundlagen der Ideen von Lorentz
her, Einstein hat das Prinzip der Relativität reinlicher herauspräpariert, zugleich es mit besonderem Er-
folge zur Behandlung spezieller Probleme der Optik bewegter Medien angewandt, endlich auch zuerst
die Folgerungen̈uber Ver̈anderlichkeit der mechanischen Masse bei thermodynamischen Vorg̈angen
gezogen. Kurz danach und wohl unabhängig von Einstein hat Poincaré sich in mehr mathematischer
Untersuchung̈uber die Lorentzschen Elektronen und die Stellung der Gravitation zu ihnen verbreitet,
endlich hat Planck einen Ansatz zu einer Dynamik auf Grund des Relativiẗatsprinzipes versucht.”
37 “Vous connaissez sans doute l’opuscule de Minkowski “Raum und Zeit,” publíe apr̀es sa mort ainsi
que les id́ees de Einstein et Lorentz sur la même question. Maintenant M. Fredholm me dit que vous
avez touch́e à des id́ees semblables avant les autres, mais en vous exprimant d’une manìere moins
philosophique et plus mathématique.” It is a pleasure to acknowledge the assistance ofDr. K. Broms
in providing me with a copy of this letter.
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following year, for example, Poincaré dramatically announced that already back
in 1874 (or 1875), while a student at theÉcole polytechnique, he and a friend
had experimentally confirmed the principle of relativity for optical phenomena
(Poincaŕe 1910b: 104).38 Less than five years after its discovery, the theory of
relativity’s prehistory was being revealed by Poincaré in a way that underlined
its empirical foundations—in contradistinction to the Minkowskian version. If
Poincaŕe expressed little enthusiasm for the new mechanics unleashed by the prin-
ciple of relativity, and had doubts concerning its experimental underpinnings, he
never disowned the principle.39 In the spring of 1912, Poincaré came to acknowl-
edge the wide acceptance of a formulation of physical laws infour-dimensional
(Minkowski) space-time, at the expense of the Lorentz-Poincaŕe electron theory.
His own preference remained with the latter alternative, which did not require an
alteration of the concept of space (Poincaré 1912: 170).

In the absence of any clear indication why Minkowski left Poincaŕe out of his
lecture, a speculation or two on his motivation may be entertained. If Minkowski
had chosen to include some mention of Poincaré’s work, his own contribution
may have appeared derivative. Also, Poincaré’s modification of Lorentz’s the-
ory of electrons constituted yet another example of the cooperative role played
by the mathematician in the elaboration of physical theory.40 Poincaŕe’s “more
mathematical” study of Lorentz’s electron theory demonstrated the mathemati-
cian’s dependence upon the insights of the theoretical physicist, and as such, it
did little to establish the independence of the physical andmathematical paths to
the Lorentz group. The metatheoretical goal of establishing the essentially math-
ematical nature of the principle of relativity was no doubt more easily attained by
neglecting Poincaré’s elaboration of this principle.

2.3. LORENTZ ANDEINSTEIN

Turning first to the work of Lorentz, Minkowski made another significant suppres-
sion. In theGrundgleichungen, Minkowski had adopted Poincaré’s suggestion to
give Lorentz’s name to a group of transformations with respect to which Maxwell’s
equations were covariant (p. 473), but in the Cologne lecture, this convention was
dropped. Not once did Minkowski mention the “Lorentz” transformations, he
referred instead to transformations of the group designated Gc. The reason for

38 The experiment was designed to test the validity of the principle of relativity for the phenomenon
of double refraction. The telling of this school anecdote may also be connected to Mittag-Leffler’s
campaign to nominate Poincaré for the 1910 Nobel Prize for physics. Poincaré never mentioned the
names of Einstein or Minkowski in print in relation to the theory of relativity, but during the course
of this lecture, according to one witness, he mentioned Einstein’s work in this area (see Moszkowski
1920: 15).

39 In a lecture to the Saint Louis Congress in September 1904, Poincaŕe interpreted the “principe de
relativité” with respect to Lorentz’s theory of electrons, distinguishing this extended relativity principle
from the one employed in classical mechanics (1904: 314).

40 Willy Wien spelled out this role at the 1905 meeting of the German Society of Mathematicians
in Meran. Wien suggested that “physics itself” required “more comprehensive cooperation” from
mathematicians in order to solve its current problems, including those encountered in the theory of
electrons (Wien 1906: 42; McCormmach 1976: xxix). While Poincaŕe’s work in optics and electricity
was well received, and his approach emulated by some German physicists (see Darrigol 1993: 223),
mathematicians generally considered him their representative.



Minkowski, Mathematicians, and the Mathematical Theory ofRelativity 59

this suppression is unknown, but very probably is linked to Minkowski’s discov-
ery of a precursor to Lorentz in the employment of the transformations. In 1887,
the G̈ottingen professor of mathematical physics, Woldemar Voigt, published his
proof that a certain transformation inx , y, z andt (which was formally equivalent
to the one used by Lorentz) did not alter the fundamental differential equation
for a light wave propagating in the free ether with velocityc (Voigt 1887). For
Minkowski, this was an essential application of the law’s covariance with respect
to the groupGc. Lorentz’s insight he considered to be of a more general nature:
Lorentz would have attributed this covariance to all of optics (Minkowski 1909;
80). By placing Voigt’s transformations at the origins of the principle of relativity,
Minkowski not only undercut Poincaré’s attribution to Lorentz, he also emulated
Hertz’s epigram (Maxwell’s theory is Maxwell’s system of equations), whose un-
derlying logic could only reinforce his own metatheoretical claims. In addition,
he showed courtesy toward his colleague Voigt, who was not displeased by the
gesture.41

Having dealt in this way with the origins of the groupGc, Minkowski went
on to consider another Lorentzian insight: the contractionhypothesis. Using
the space-time diagram, Minkowski showed how to interpret the hypothesis of
longitudinal contraction of electrons in uniform translation (Figure 2, right). Re-
ducing Lorentz’s electron to one spatial dimension, Minkowski showed two bars
of unequal width, corresponding to two electrons: one at rest with respect to an
unprimed system and one moving with relative velocityv, but at rest with respect
to the primed system. When the moving electron was viewed from the unprimed
system, it would appear shorter than an electron at rest in the same system, by a
factor

√

1 − v2/c2. Underlining the “fantastic” nature of the contraction hypoth-
esis, obtained “purely as a gift from above,” Minkowski asserted the complete
equivalence between Lorentz’s hypothesis and his new conception of space and
time, while strongly suggesting that, by the latter, the former became “much more
intelligible.” In sum, Minkowski held that his theory offered a better understanding
of the contraction hypothesis than did Lorentz’s theory of electrons (1909: 80).42

In his discussion of Lorentz’s electron theory, Minkowski was led to bring up
the notion of local time, which was the occasion for him to mention Einstein.

But the credit of first clearly recognizing that the time of one electron is
just as good as that of the other, that is to say, thatt andt ′ are to be treated
identically, belongs to A. Einstein.43 (Minkowski 1909: 81)

41 In response to Minkowski’s attribution of the transformations to his 1887 paper, Voigt gently
protested that he was concerned at that time with the elastic-solid ether theory of light, not the
electromagnetic theory. At the same time, Voigt acknowledged that his paper contained some of the
results later obtained from electromagnetic-field theory (see the discussion following Bucherer 1908:
762). In honor of the tenth anniversary of the principle of relativity, the editors ofPhysikalische
Zeitschrift, Voigt’s colleagues Peter Debye and Hermann Simon, decidedto re-edit the 1887 paper,
with additional notes by the author (Voigt 1915). Shortly afterwards, Lorentz generously conceded
that the idea for the transformations might have come from Voigt (Lorentz 1916: 198, n. 1).

42 Lorentz’s theory did not purport to explain the hypothetical contraction. Although he made
no mention of this in the Cologne lecture, Minkowski pointedout in theGrundgleichungen that the
(macroscopic) equations for moving dielectrics obtained from Lorentz’s electron theory did not respect
the principle of relativity (1908: 493).
43 “Jedoch scharf erkannt zu haben, daß die Zeit des einen Elektrons ebenso gut wie die des anderen
ist, d.h. daßt und t ′ gleich zu behandeln sind, ist erst das Verdienst von A. Einstein.”
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This interpretation of Einstein’s notion of time with respect to an electron was not
one advanced by Einstein himself. We will return to it shortly; for now we observe
only that Minkowski seemed to lend some importance to Einstein’s contribution,
because he went on to refer to him as having deposed the concept of time as one
proceeding unequivocally from phenomena.44

2.4. MINKOWSKI’S DISTORTION OFEINSTEIN’S KINEMATICS

At this point in his lecture, after having briefly reviewed the work of his forerun-
ners, Minkowski was in a position to say just where they went wrong. Underlining
the difference between his view and that of the theoretical physicists Lorentz and
Einstein, Minkowski offered the following observation:

Neither Einstein nor Lorentz rattled the concept of space, perhaps because
in the above-mentioned special transformation, where the plane of x ′t ′

coincides with the plane ofxt , an interpretation is [made] possible by
saying that thex-axis of space maintains its position.45 (Minkowski 1909:
81–82)

This was the only overt justification offered by Minkowski insupport of his claim
to have surpassed the theories of Lorentz and Einstein. His rather tentative termi-
nology [eine Deutung möglich ist] signaled uncertainty and perhaps discomfort in
imputing such an interpretation to this pair. Also, given the novelty of Minkow-
ski’s geometric presentation of classical and relativistic kinematics, his audience
may not have seen just what difference Minkowski was pointing to. Minkowski
did not elaborate; but for those who doubted that a priority claim was in fact being
made, he added immediately:

Proceeding beyond the concept of space in a corresponding way is likely
to be appraised as only another audacity of mathematical culture. Even so,
following this additional step, indispensable to the correct understanding of
the groupGc, the termrelativity postulate for the requirement of invariance
under the groupGc seems very feeble to me.46 (Minkowski 1909: 82)

Where Einstein had deposed the concept of time (and time alone, by implication),
Minkowski claimed in a like manner to have overthrown the concept of space, as
Galison has justly noted (1979: 113). Furthermore, Minkowski went so far as to
suggest that his “additional step” was essential to a “correct understanding” of what
he had presented as the core of relativity: the groupGc. He further implied that
the theoretical physicists Lorentz and Einstein, lacking a“mathematical culture,”
were one step short of the correct interpretation of the principle of relativity.

44 “Damit war nun zun̈achst die Zeit als ein durch die Erscheinungen eindeutig festgelegter Begriff
abgesetzt” (Minkowski 1909: 81).
45 “An dem Begriffe des Raumes rüttelten weder Einstein noch Lorentz, vielleicht deshalb nicht, weil
bei der genannten speziellen Transformation, wo diex ′, t ′-Ebene sich mit derx, t-Ebene deckt, eine
Deutung m̈oglich ist, als sei diex-Achse des Raumes in ihrer Lage erhalten geblieben.”
46 “Über den Begriff des Raumes in entsprechender Weise hinwegzuschreiten, ist auch wohl nur
als Verwegenheit mathematischer Kultur einzutaxieren. Nach diesem zum wahren Verständnis der
GruppeGc jedoch unerl̈aßlichen weiteren Schritt aber scheint mir das WortRelativitätspostulat für
die Forderung einer Invarianz bei der GruppeGc sehr matt.”
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Having disposed in this way of his precursors, Minkowski wasauthorized to
invent a name for his contribution, which he called the postulate of the absolute
world, or world-postulate for short (1909: 82). It was on this note that Minkowski
closed his essay, trotting out the shadow metaphor one more time:

The validity without exception of the world postulate is, soI would like to
believe, the true core of an electromagnetic world picture;met by Lorentz,
further revealed by Einstein, [it is] brought fully to lightat last.47 (Minkow-
ski 1909: 88)

According to Minkowski, Einstein clarified the physical significance of Lorentz’s
theory, but did not grasp the true meaning and full implication of the principle
of relativity. Minkowski marked his fidelity to the G̈ottingen electron-theoretical
program, which was coextensive with the electromagnetic world picture. When
Paul Ehrenfest asked Minkowski for a copy of the paper going by the title “On
Einstein-Electrons,” Minkowski replied that when used in reference to theGrund
gleichungen, this title was “somewhat freely chosen.” However, when applied to
the planned sequels to the latter paper, he explained, this name would be “more
correct.”48 Ehrenfest’s nickname for theGrundgleichungen no doubt reminded
Minkowski of a latent tendency among theoretical physicists to view his theory as
a prolongation of Einstein’s work, and may have motivated him to provide justifi-
cation of his claim to have proceeded beyond the work of Lorentz and Einstein.

Did Minkowski offer a convincing argument for the superiority of his theory?
The argument itself requires some clarification. Accordingto Peter Galison’s re-
construction (1979: 113), Minkowski “conjectures [that a]relativistically correct
solution can be obtained” in one (spatial) dimension by rotating the temporal axis
through a certain angle, leaving thex ′-axis superimposed on thex-axis. Yet Min-
kowski didnot suggest that this operation was either correct or incorrect. Rather,
he claimed it was possible to interpret a previously-mentioned transformation in
a way which was at odds with his own geometric interpretation. Proposed by
Minkowski as Lorentz’s and Einstein’s view of space and time, such a reading
was at the same time possible, and incompatible with Einstein’s presentations of
the principle of relativity.

The claim referred back to Minkowski’s exposé of both classical and relativis-
tic kinematics by means of space-time diagrams. As mentioned above, he had
emphasized the fact that in classical mechanics the time axis may be assigned any
direction with respect to the fixed spatial axesx , y, z, in the regiont > 0. Min-
kowski’s specification of the “special transformation” referred in all likelihood to

47 “Die ausnahmslose G̈ultigkeit des Weltpostulates ist, so möchte ich glauben, der wahre Kern
eines elektromagnetischen Weltbildes, der von Lorentz getroffen, von Einstein weiter herausgeschält,
nachgerade vollends am Tage liegt.”
48 Minkowski to Paul Ehrenfest, 22 October 1908, Ehrenfest Papers, Museum Boerhaave, Lei-
den. Judging from the manuscripts in Minkowski’sNachlaß (Nieders̈achsische Staats- und Univer-
sitätsbibliothek, Math. Archiv 60: 1), he had made little progress on Einstein-electrons before an
attack of appendicitis put an end to his life in January 1909,only ten weeks after writing to Ehrenfest.
An electron-theoretical derivation of the basic electromagnetic equations for moving media appeared
under Minkowski’s name in 1910, but was actually written by Max Born (cf. Minkowski & Born 1910:
527).
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the special Lorentz transformations, in which case Minkowski’s further require-
ment of coincidence of thext andx ′t ′ planes was (trivially) satisfied; the term is
encountered nowhere else in the text. By singling out the physicists’ reliance on
the special Lorentz transformation, Minkowski underlinedhis introduction of the
inhomogeneous transformations, which accord no privilegeto any single axis or
origin.49 He then proposed that Lorentz and Einsteinmight have interpreted the
special Lorentz transformation as a rotation of thet ′-axis alone, thex ′-axis re-
maining fixed to thex-axis. Since Minkowski presented two geometric models of
kinematics in his lecture, we will refer to them in evaluating his view of Lorentz’s
and Einstein’s kinematics.

The first interpretation, and the most plausible one in the circumstances, refers
to the representation of Galilean kinematics (see Figure 1). On a rectangular
coordinate system inx andt, a t ′-axis is drawn at an angle to thet-axis, and the
x ′-axis lies on thex-axis as required by Minkowski. Lorentz’s electron theory
held that in inertial systems the laws of physics were covariant with respect to a
Galilean transformation,x ′ = x − vt.50 In the x ′t ′-system, the coordinates are
oblique, and the relationship betweent andt ′ is fixed by Lorentz’s requirement
of absolute simultaneity:t ′ = t. Where Poincaŕe and Einstein wrote the Lorentz
transformation in one step, Lorentz used two, so that a Galilean transformationwas
combined with a second transformation containing the formula for local time.51

The second transformation did not lend itself to graphical representation, and had
no physical meaning for Lorentz, who understood the transformed values as auxil-
iary quantities. The first stage of the two-dimensional Lorentz transformation was
identical to that of classical mechanics, and may be represented in the same way,
by rotating the time axis while leaving the position of the space axis unchanged.
When realized on a Galilean space-time diagram, and in the context of Lorentz’s
electron theory, Minkowski’s description of the special Lorentz transformations
seems quite natural. On the other hand, as a description of Einstein’s kinemat-
ics it seems odd, because Einstein explicitly abandoned theuse of the Galilean
transformations in favor of the Lorentz transformations.52

Lorentz’s theory of electrons provided for a constant propagation velocity of
light in vacuo, when the velocity was measured in an inertial frame. However,
this propagation velocity was not considered to be a universal invariant (as was
maintained in the theories of both Einstein and Minkowski).In Lorentz’s theory of
electrons, retention of classical kinematics (with the adjoining notion of absolute
simultaneity) meant that the velocity of light in a uniformly translating frame of

49 See Minkowski 1908a: §5; 1909: 78.

50 The terminology ofGalilean transformations was introduced by Philipp Frank (1908: 898) in his
analysis of theGrundgleichungen.

51 Lorentz (1904) used the Galilean transformations separately from, and in conjunction with the
following transformations (the notation is modified):x ′ = βx, y′ = y, z ′ = z, t = t/β − βvx/c2,

whereβ = 1/
√

1 − v2/c2.

52 To supposet equal tot ′, Einstein commented later, was to make an “arbitrary hypothesis” (1910:
26).
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reference would in general depend on the frame’s velocity with respect to the
ether. Measurements of light velocity performed by observers in these frames,
however, would always reveal the same value, due to compensatingdilatory effects
of motion on the tools of measurement (Lorentz 1916: 224–225).

The latter distinction enters into the second way by which Minkowski might
have measured Einstein’s kinematics. Referring now to a Minkowski diagram,
two inertial systemsS andS′ may be represented, as in the left side of Figure 2. In
systemS, points in time and space are represented on general Cartesian axes, on
which the units are chosen in such a way that the velocity of lightin vacuo is equal
to 1.53 For an observer at rest inS, the systemS′ appears to be in uniform motion
in a direction parallel to thex-axis with a sub-light velocityv, and the temporal
axisct ′ for the systemS′ is drawn at an angle to the axisct . Einstein postulated
that the velocity of lightin vacuo was a universal constant, and asserted that units
of length and time could be defined in the same way for all inertial systems (this
definition will be discussed later, with respect to the concept of simultaneity). He
showed that from the light postulate and a constraint on linearity, in accordance
with his measurement conventions, it followed that light propagated with the
same velocity in both systems. From the corresponding transformation equations,
Einstein deduced the following equations for the surface ofa light wave emitted
from the origin of the space and time coordinates consideredin the systemsS
(with coordinatesx, y, z, t) andS′ (coordinates designatedξ, η, ζ, τ ):

x2 + y2 + z2 = c2t2, ξ2 + η2 + ζ 2 = c2τ 2.

Einstein initially presented this equivalence as proof that his two postulates were
compatible; later he recognized that the Lorentz transformations followed from
this equivalence and a requirement of symmetry (Einstein 1905: 901; 1907: 419).
At the same time, he made no further comment on the geometric significance of this
invariance and maintained at least a semantic distinction between kinematics and
geometry.54Minkowski chose to fold one into the other, regardingc2t2−x2− y2−
z2 as ageometric invariant. Sincey andz do not change in the case considered
here,c2t2 − x2 is an invariant quantity when measured in an inertial system.
Minkowski’s space-time diagram is a model of the geometry based on this metric.

Following Minkowski’s interpretation of Einstein’s kinematics, thex ′-axis (that
which records the spatial distribution of events corresponding toct ′ = 0) coincides
with the x-axis. Recalling that the units of length and time for inertial systems
were defined by Einstein in such a way that the quantityc2t2 − x2 was invariant
for any two points, the position of thex ′-axis with respect to thex-axis depended
only upon the relative velocity ofS′, manifest in the tilt angle of thect ′-axis with

53 This value ofc itself implies the orthogonality of temporal and spatial axes in every inertial system,
a feature which is not apparent on a Minkowski diagram. For his part, Einstein defined the units of
length and time (ideal rods and clocks) in a coordinate-freemanner.

54 On Einstein’s reluctance to confound kinematics with geometry see his introduction of the terms
“geometric shape” and “kinematic shape” to distinguish theforms of rigid bodies in a rest frame from
those of rigid bodies in frames in uniform relative motion (Einstein 1907: 417, 1910: 28; Paty 1993:
170).
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respect to thect-axis (and vice-versa). Consequently, the requirement that the
x ′-axis coincide with thex-axis could not be met here, either, at least not without:
(1) sacrificing one of Einstein’s postulates, (2) abandoning Einstein’s definition of
time (and simultaneity), or (3) arbitrarily introducing anadditional transformation
in order to recover the special Lorentz transformation through composition.

Neither one of the first two options would have been considered natural or
plausible to one familiar with Einstein’s publications. Asfor the last option, since
none of the properties of the Lorentz transformations are reflected geometrically,
the operation is far from interpretative—it is pointless. It is also improbable
that Minkowski would have attributed, even implicitly, theuse of his space-time
diagram to Lorentz or Einstein. For all these reasons, this reconstruction is far
less plausible than the one considered previously.

If either of these two reconstructions reflects accurately what Minkowski had in
mind, the upshot is an assertion that Lorentz and Einstein subscribed to a definition
of space and time at variance with the one proposed by Einstein in 1905. Ascribing
the first (Galilean) interpretation to Lorentz was unlikelyto raise any eyebrows.
The second interpretation is inconsistent with Einstein’spresentation of relativistic
kinematics. Furthermore, Minkowski imputedone interpretation [eine Deutung]
to both Lorentzand Einstein.55 Attentive to the distinction between Lorentz’s
theory of electrons and Einstein’s theory of relativity, both Philipp Frank and
Guido Castelnuovo rectified what they perceived to be Minkowski’s error, as
we will see later in detail for Castelnuovo.56 On the other hand, Vito Volterra
(1912: 23) and Lothar Heffter (1912: 4) adopted Minkowski’sview of Einstein’s
kinematics, so it appears that no consensus was establishedon the cogency of
Minkowski’s argument in the pre-war period.

The confrontation of Einstein’s articles of 1905 and 1907, both cited by Min-
kowski, with the interpretation charged to Einstein (and Lorentz) by Minkowski,
offers matter for reflection. Indeed, the justification offered by Minkowski for
his claim would seem to support the view, held by more than onehistorian, that
Minkowski, to put it bluntly, did not understand Einstein’stheory of relativity.57

2.5. DID MINKOWSKI UNDERSTAND EINSTEIN’S CONCEPTS OF RELATIVE TIME AND SIMUL-

TANEITY?

A detailed comparison of the theories of Einstein and Minkowski is called for,
in order to evaluate Minkowski’s understanding of Einsteinian relativity; here
we review only the way in which Einstein’s concepts of time and simultaneity
were employed by both men up to 1908, concepts chosen for their bearing upon
Minkowski’s unique graphic representation of Lorentz’s and Einstein’s kinematics.

55 A basis for this conflation was provided by Einstein in 1906, when he referred to the “Theorie von
Lorentz und Einstein” (see the editorial note in EinsteinCP2: 372).

56 Frank 1910: 494; Castelnuovo 1911: 78. For later examples see Silberstein 1914: 134 and Born
1920: 170. Extreme discretion was exercised here, as none ofthese writers taxed Minkowski with
error.

57 Many historians have suggested that Minkowski never fully understood Einstein’s theory of rela-
tivity, for example, Miller (1981: 241), Goldberg (1984: 193); Pyenson (1985: 130).
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The relativity of simultaneity and clock synchronization via optical signals
had been discussed by Poincaré as early as 1898, and several times thereafter
(Poincaŕe 1898, 1904: 311). As mentioned above, Lorentz’s theory of electrons
did not admit the relativity of simultaneity; Lorentz himself used this concept to
distinguish his theory from that of Einstein (Lorentz 1910:1236).

Along with the postulation of the invariance of the velocityof light propagation
in empty space and of the principle of relativity of the laws of physics for inertial
frames of reference, Einstein’s 1905Annalen article began with adefinition of
simultaneity (1905: 891–893). He outlined a method for clock synchronization
involving a pair of observers at rest, located at different points in space, denoted
A andB, each with identical clocks. Noting that the time of an eventat A may not
be compared with the time of an event atB without some conventional definition
of “time,” Einstein proposed that time be defined in such a waythat the delay for
light traveling fromA to B has the same duration as when light travels fromB to
A.

Einstein supposed that a light signal was emitted fromA at timetA, reflected
at pointB at timetB , and observed at pointA at timet ′A. The clocks atA andB
were then synchronous, again by definition, iftB − tA = t ′A − tB . After defining
time and clock synchronicity, Einstein went on to postulatethat the propagation
velocity of light in empty space is a universal constant (1905: 894), such that

2 AB

t ′A − tA
= c.

Essentially the same presentation of time and simultaneitywas given by Einstein
in his 1908 review paper, except in this instance he chose to refer to one-way light
propagation (1907: 416).

In summary, by the time of the Cologne lecture, Einstein had defined clock
synchronicity using both round-trip and one-way light travel between points in an
inertial frame. Furthermore, we know for certain that Minkowski was familiar with
both of Einstein’s papers. The formal equivalence of Einstein’s theory with that of
Minkowski is not an issue, since Minkowski adopted unequivocally the validity of
the Lorentz transformations, and stated just as clearly that the constant appearing
therein was the velocity of propagation of light in empty space. The issue is
Minkowski’s own knowledge of this equivalence, in other words, his recognition
of either an intellectual debt to Einstein, or of the fact that he independently
developed a partially or fully equivalent theory of relativity. In what follows, we
examine some old and new evidence concerning Minkowski’s grasp of Einstein’s
time concept.

Insofar as meaning may be discerned from use, Minkowski’s use of the concepts
of time and of simultaneity was equivalent to that of Einstein. In the Cologne lec-
ture, for example, Minkowski demonstrated the relativity of simultaneity, employ-
ing for this purpose his space-time diagram (1909: 83). A more detailed expośe
of the concept–without the space-time diagram–had appeared in theGrundglei
chungen. In the earlier paper, Minkowski examined the conditions under which
the notion of simultaneity was well defined for a single frameof reference. His rea-
soning naturally supposed that the one-way light delay between two distinct points
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A andB was equal to the ordinary distanceAB divided by the velocity of light, ex-
actly as Einstein had supposed. To conclude his discussion of the concept of time
in theGrundgleichungen, Minkowski remarked by way of acknowledgment that
Einstein had addressed the need to bring the nature of the Lorentz transformations
physically closer (1908a: 487).

Notwithstanding Minkowski’s demonstrated mastery of Einstein’s concepts of
time and of simultaneity, his understanding of Einstein’s idea of time has been
questioned. In particular, a phrase cited above from the Cologne lecture has
attracted criticism, and is purported to be emblematic of Minkowski’s unsure
grasp of the difference between Lorentz’s theory and Einstein’s (Miller 1981:
241). In explaining how Einstein’s notion of time was different from the “local
time” employed by Lorentz in his theory of electrons, Minkowski recognized
the progress made by his former student, for whom “the time ofone electron is
just as good as that of the other.” In his 1905 relativity paper, Einstein referred,
not to the time of one electron, but to the time associated with the origin of a
system of coordinates in uniform translation, instantaneously at rest with respect
to the velocity of an electron moving in an electromagnetic field (1905: 917–918).
Provided that such systems could be determined for different electrons, the time
coordinates established in these systems would be related in Einstein’s theory by
a Lorentz transformation. In this sense, Minkowski’s electronic interpretation of
time was compatible with Einstein’s application of his theory to electron dynamics.

Minkowski’s interpretation of Einstein’s time also reflects the conceptual change
wrought in physics by his own notion of proper time (Eigenzeit). Near the end of
1907, Minkowski became aware of the need to introduce a coordinate-independent
time parameter to his theory.58 This recognition led him (in the appendix to the
Grundgleichungen) to introduce proper time, which he presented as a generaliza-
tion of Lorentz’s local time (1908a: 515). From a formal perspective, proper time
was closely related to Einstein’s formula for time dilation.59 Minkowski may have
simply conflated proper time with time dilation, since the “time of one electron”
that Minkowski found in Einstein’s theory naturally referred in his view to thetime
parameter along the worldline of an electron, otherwise known as proper time.
The introduction of proper time enabled Minkowski to develop the space-time
formalism for Lorentz-covariant mechanics, which formed the basis for subse-
quent research in this area. In this way, proper time became firmly embedded in
the Minkowskian view of world-lines in space-time, which Einstein also came to
adopt several years later.60

58 On Minkowski’s discovery of proper time, see Walter 1996: 101.

59 Minkowski’s expression for proper time,
∫

dτ =
∫

dt
√

1 − v2/c2, may be compared with

Einstein’s expression for time dilation,τ = t
√

1 − v2/c2, although the contexts in which these
formulae appeared were quite dissimilar (Einstein 1905: 904; Miller 1981: 271–272). The notation
has been changed for ease of comparison.

60 Einstein’s research notes indicate that he adopted a Riemannian space-time metric as the basis of
his theory of gravitation in the summer of 1912; see the transcriptions and editorial notes in Einstein
CP4.
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While the electronic interpretation of time has a clear relation to both Einstein’s
writings and Minkowski’s proper time, the phrase “the time of one electron is just
as good as that of the other” appears to belong to Lorentz. Oneof the drafts of
the Cologne lecture features a discussion of the physical meaning of Lorentz’s
local time, which was not retained in the final version. Minkowski referred to a
conversation with Lorentz during the mathematicians’ congress in Rome, in early
April 1908:

For the uniformly moving electron, Lorentz had called the combination
t ′ = (−qx + t)/

√

1 − q2 the local time of the electron, and used this
concept to understand the contraction hypothesis. Lorentzhimself told me
conversationally in Rome that it was to Einstein’s credit tohave recognized
thatthe time of one electron is just as good as that of the other, i.e., thatt and
t ′ are equivalent. [Italics added]61 (Undated manuscript, Niedersächsische
Staats- und Universitätsbibliothek, Math. Archiv 60:4, 11)

According to Minkowski’s account, Lorentz employed the phrase in question to
characterize Einstein’s new concept of time. In fact, what Lorentz had called local
time was not the above expression, butt ′ = t/β − βvx/c2. When combined with
a Galilean transformation, the latter expression is equivalent to the one Minkowski
called Lorentz’s local time. Minkowski must have recognizedhis mistake, because
in the final, printed version of “Raum und Zeit” he rewrote his definition of local
time and suppressed the attribution of the italicized phrase to Lorentz.

Based on the similarity of the treatment of simultaneity in theGrundgleichungen
with that of Einstein’s writings, Minkowski’s acknowledgment of Einstein’s con-
tribution in this area, his extension via proper time of Einstein’s relative time to the
parameterization of world-lines, and the change he made to the definition of local
time given in an earlier draft of the Cologne lecture, it appears that Minkowski
understood Einstein’s concepts of time and simultaneity. This means, of course,
that Minkowski’s graphic representation of Einstein’s kinematics was uncharitable
at best. Minkowski may have perceived the success of his own formulation of
relativity to depend in some way upon a demonstration that his theory was not
just an elaboration of Einstein’s work. Likewise, some expedient was required
in order for Minkowski to achieve the metatheoretical goal of demonstrating the
superiority of pure mathematics over the intuitive methodsof physicists; he found
one in a space-time diagram.

3. Responses to the Cologne lecture

The diffusion of Minkowski’s lecture was exceptional. A fewmonths after the
Cologne meeting, it appeared in three different periodicals, and as a booklet. By

61 “Lorentz hatte f̈ur das gleichf̈ormig bewegte Elektron die Verbindungt ′ = (−qx + t)/
√

1 − q2

Ortszeit des Elektrons genannt, und zum Verständnis der Kontraktionshypothese diesen Begriff ver-
wandt. Lorentz selbst sagte mir gesprächsweise in Rom, dass die Zeit des einen Elektrons ebensogut
wie die des anderen ist, d.h. die Gleichwertigkeit zut und t ′ erkannt zu haben, das Verdienst von
Einstein ist.” Minkowski’s story was corroborated in part by his student Louis Kollros, who recalled
overhearing Lorentz and Minkowski’s conversation on relativity during a Sunday visit to the gardens
of the Villa d’Este in Tivoli (Kollros 1956: 276).
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the end of 1909, translations had appeared in Italian and French, the latter with the
help of Max Born (Minkowski 1909: 517, n. 1). The response to these publications
was phenomenal, and has yet to be adequately measured. In this direction, we first
present some bibliometric data on research in non-gravitational relativity theory,
then discuss a few individual responses to Minkowski’s work.

In order to situate Minkowski’s work in the publication history of the theory
of relativity, we refer to our bibliometric analysis (Walter 1996). The temporal
evolution in the number of articles published on non-gravitational relativity the-
ory is shown in Figure 3, for West European-language journals worldwide from
1905 to 1915, along with the relative contribution of mathematicians, theoretical
physicists, and non-theoretical physicists. These three groups accounted for nine
out of ten papers published in this time period.
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Figure 3. Papers on the non-gravitational theory of relativity.

The plot is based on 610 articles out of a total of 674 for all professions in the period from
1905 to 1915, inclusive. For details on sources and selection criteria, see chapter four of
the author’s Ph.D. dissertation (Walter 1996).

Starting in 1909, publicationnumbers increased rapidly until 1912, when the atten-
tion of theoretical physicists shifted to quantum theory and theories of gravitation.
The annual publication total also declined then for non-theoretical physicists, but
remained stable for mathematicians until the outbreak of war in 1914.

A comparison of the relative strength of disciplinary involvement with the
theory of relativity can be made for a large group of contributors, if we categorize
individuals according to the discipline they professed in the university. Factoring
in the size of the teaching staff in German universities in 1911, and taking into
consideration only research published by certified teaching personnel (more than
half of all authors in 1911 Germany), we find the greatest penetration of relativity
theory among theoretical physicists, with one out of four contributing at least
one paper on this subject (Table 1, col. 5). Professors of mathematics and of
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non-theoretical physics largely outnumbered professors of theoretical physics in
German universities, and consequently, the penetration ofrelativity theory in the
former fields was significantly lower than the ratio for theoretical physics. The
number of contributors for each of the three groups was roughly equivalent,
yet theoretical physicists wrote three papers for every onepublished by their
counterparts in mathematics or non-theoretical physics (Table 1, col. 4).

Discipline Instructors Relativists Pubs. Rel./Instr.

Theoretical Physics 23 6 21 26%

Non-Theoretical Physics 100 6 8 6%

Mathematics 86 5 7 6%

Table 1. Disciplinary penetration of relativity for university instructors in 1911
Germany.
The relativist category is taken here to include critics of the special theory of
relativity; physics is taken to include applied physics. The number of teaching
positions is compiled from Auerbach & Rothe 1911.

3.1. THE PHYSICAL RECEPTION OFMINKOWSKI’S THEORY

The initial response by Einstein and Laub to theGrundgleichungen, we mentioned
earlier, dismissed the four-dimensional approach, and criticized Minkowski’s for-
mula for ponderomotive force density. Others were more appreciative of Minkow-
ski’s formalism, including the co-editors of theAnnalen der Physik, Max Planck
and Willy Wien. According to Planck and Wien, Minkowski had put Einstein’s
theory in a very elegant mathematical form (Wien 1909a: 37; Planck 1910a: 110).
In private, however, both men acknowledged a significant physical content to Min-
kowski’s work; in a letter to Hilbert, Wien expressed hope that these ideas would
be “thoroughly worked out” (Wien 1909b; Planck 1909). WhileWien and Planck
applauded Minkowski’s mathematical reformulation of the theory of relativity,
they clearly rejected his metatheoretical views, and sincetheir public evaluation
came to dominate physical opinion of Minkowski’s theory, Minkowski’s effort in
the Cologne lecture to disengage his work from that of Einstein must be viewed
as a failure, at least as far as most physicists were concerned.

Not all physicists agreed with Planck and Wien, however. Therespected the-
orist Arnold Sommerfeld was the key exception to the rule of recognizing only
Minkowski’s formal accomplishment. A former student of Hurwitz and Hilbert,
and an ex-prot́eǵe of Felix Klein, Sommerfeld taught mathematics in Göttingen
before being called to the Aachen chair in mechanics. In 1906, on the basis of his
publications on diffraction and on electron theory, and upon Lorentz’s recommen-
dation, he received a call to the chair in theoretical physics in Munich, where he
was also to head a new institute.62

62 See Eckert & Pricha 1984; Jungnickel & McCormmach 1986: vol.2, 274.
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Sommerfeld was among the first to champion Minkowskian relativity for both its
physical and mathematical insights. The enthusiasm he showed for Minkowski’s
theory contrasts with the skepticism with which he initially viewed Einstein’s
theory. The latter held little appeal for Sommerfeld, who preferred the G̈ottingen
lecturer Max Abraham’s rigid-sphere electron theory for its promise of a purely
electromagnetic explanation of physical phenomena.63 In Munich Sommerfeld’s
views began to change. The mathematical rigor of his papers on the rigid electron
was subjected to harsh criticism by his former thesis advisor, now colleague,
the professor of mathematics Ferdinand Lindemann. Vexed bythese attacks,
Sommerfeld finally suggested to Lindemann that the problemsconnected with time
in electron theory were due not to its mathematical elaboration, but to its physical
foundations (Sommerfeld 1907a: 281). Sommerfeld wrote a paper defending
Einstein’s theory against an objection raised by Wien (Sommerfeld 1907b), and in
the summer of 1908, he exchanged correspondence with Minkowski concerning
Einstein’s formula for ponderomotive force, and Minkowski’s description of the
motion of a uniformly-accelerating electron (Minkowski 1908b).64

The nature of Sommerfeld’s immediate reaction to Minkowski’s lecture is
unknown, although he was one of three members of the audienceto respond
during the discussion period, and the only physicist.65 After the meeting, he
wrote to Lorentz to congratulate him on the success of his theory, for Alfred H.
Bucherer had presented results of Becquerel-ray deflectionexperiments that fa-
vored the “Lorentz-Einstein” deformable-electron theoryover the rigid-electron
theory (Sommerfeld 1908). In another letter to Lorentz, a little over a year later,
Sommerfeld announced, “Now I, too, have adapted to the relative theory; in par-
ticular, Minkowski’s systematic form and view facilitatedmy comprehension”
(Sommerfeld 1910c).66 Both Bucherer’s experimental results and the Minkow-
skian theoretical view contributed to Sommerfeld’s adjustment to the theory of
relativity, but the latter was what he found most convincing.

In Sommerfeld’s first publications on Minkowski’s theory, he emphasized the
geometric interpretation of the Lorentz transformations as a rotation in space-
time; this was an aspect that also featured in lectures givenin Munich during
winter semester 1909/10.67He further enhanced the geometric view of relativity by
deriving the velocity addition formula from spherical trigonometrywith imaginary
sides—a method that pointed the way to a reformulation of thetheory of relativity

63 See the remarks made by Sommerfeld after a lecture by Planck (1906: 761).

64 In this letter, Minkowski extended an invitation to Sommerfeld to participate in a debate on electron
theory to be held at the meeting of the Mathematical Society in Göttingen on the eighth of August.

65 Along with the mathematicians Eduard Study and Friedrich Engel. Only Study’s remarks were
recorded; seeVerhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte 80 (1909): vol. 2,
9.

66 “Ich bin jetzt auch zur Relativtheorie bekehrt; besonders die systematische Form und Auffassung
Minkowski’s hat mir das Verständnis erleichtert.”

67 Sommerfeld (1909a); (1909b); lecture notes entitled “Elektronentheorie,” Deutsches Museum,
SommerfeldNachlaß; Archives for History of Quantum Physics, reel 22.
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in terms of hyperbolic trigonometry. Remarking that Einstein’s formula “loses all
strangeness” in the Minkowskian interpretation, Sommerfeld maintained that his
only goal in presenting this derivation was to show that the space-time view was a
“useful guide” in special questions, in addition to facilitating development of the
“relative theory” (Sommerfeld 1909a: 827, 829; Walter 1998).

Sommerfeld naturally considered Minkowski’s view to be more geometric than
Einstein’s theory; he found also that Einstein and Minkowski differed on what
appeared to be substantial questions of physics. The prime example of this dif-
ference concerned the correct expression for ponderomotive force density. The
covariant expression employed by Minkowski was presented by Sommerfeld as
“closer to the principle of relativity” than Einstein and Laub’s formula (Sommer-
feld 1909b: 815). Indeed, the latter formula was not Lorentz-covariant, but it had
been proposed solely for a system at rest.68

Einstein appeared as a precursor to Minkowski in Sommerfeld’s widely read
publication on the theory of relativity in theAnnalen der Physik. Offered in
tribute to Minkowski, this work criticized “older theories” that employed the
concept of absolute space, in what appears to be a response toMinkowski’s self-
presentation as genitor of a new notion of space. In Sommerfeld’s view, Einstein’s
theory represented an intermediate step between Lorentz and Minkowski, who
had rendered the work of both Lorentz and Einstein “irrelevant”:

The troublesome calculations through which Lorentz (1895 and 1904) and
Einstein (1905) prove their validity independent of the coordinate sys-
tem, and [for which they] had to establish the meaning of the transformed
field vectors, become irrelevant in the system of the Minkowski “world.” 69

(Sommerfeld 1910a: 224)

Sommerfeld depicted the technical difficulty inherent to Lorentz’s and Einstein’s
theories as a thing of the past. Inasmuch as Minkowski appealed to mathemati-
cians to study the theory of relativity in virtue of its essential mathematical nature,
Sommerfeld encouraged physicists to take up Minkowski’s theory in virtue of
its new-found technical simplicity. The pair ofAnnalen publications delivered
Minkowskian relativity in a form more palatable to physicists, by replacing the
unfamiliar matrix calculus with a four-dimensional vectornotation. Similar vec-
torial reformulations of Minkowski’s work were published the same year by Max
Abraham (1910) and Gilbert Newton Lewis (1910a, 1910b).

Apart from the change in notation, Sommerfeld’s presentation was wholly
consonant with Minkowski’s reinterpretation of electron-theoretical results. He
paraphrased, for example, Minkowski’s remark to the effectthat, far from being
rendered obsolete by his theory, the results for retarded potentials from (pre-

68 Einstein later wrote to Laub that he had persuaded Sommerfeld of the correctness of their formula
(27 August 1910; EinsteinCP5: doc. 224). For a description of the physics involved, see the editorial
note in EinsteinCP2: 503. Debate on this question continued for several years, but by 1918, as
Einstein candidly acknowledged to Walter Dällenbach, it had been known for a while that the formula
he derived with Laub was wrong (Fölsing 1993: 276).
69 “Die umsẗandlichen Rechnungen, durch die Lorentz (1895 und 1904) undEinstein (1905) ihre
vom Koordinatensystem unabhängige G̈ultigkeit erweisen und die Bedeutung der transformierten
Feldvektoren feststellen mußten, werden also im System derMinkowskischen ‘Welt’ gegenstandslos.”



72 Scott Walter

Einsteinian) electron-theoretical papers by Liénard, Wiechert and Schwarzschild
“first reveal their inner nature in four dimensions, in full simplicity” (Sommer-
feld 1909b: 813).70 As mentioned above, Sommerfeld’s reputation in theoretical
physics had been established on the basis of his publications on the rigid-electron
theory, which for years had formed the basis of the electromagnetic world picture.
The rigid electron had now been repudiated empirically by Bucherer’s results, but
Minkowski felt it was still possible to pursue the electromagnetic world picture
with ‘Einstein-electrons,’ as we saw above.71 Furthermore, this suggests that in
supporting—unconditionally—Minkowski’s view of relativity, Sommerfeld did
not “burn his boats,” as once thought (Kuhn et al. 1967: 141).Instead, Sommer-
feld’s active promotion and extension of Minkowski’s theory is best understood
as anadaptation of the framework of the electromagnetic world picture to the
principle of relativity.72

An example of this adaptation may be seen in Sommerfeld’s redescription of
a primary feature of the electromagnetic world picture: theether. For those
scientists still attached to the concept of ether (or absolute space, in Sommerfeld’s
terminology), Sommerfeld proposed that they substitute Minkowski’s notion of
the absolute world, in which the “absolute substrate” of electrodynamics was now
to be found (1910: 189). In this way, Minkowski and Sommerfeld filled the
conceptual void created by Einstein’s brusque eliminationof the ether.

Sommerfeld’s mathematical background and close contacts with the G̈ottingen
faculty distinguished him from other theoretical physicists,and enabled him to pass
through the walls separating the mathematical and physicalcommunities. In the
direction of mathematics, Sommerfeld was a privileged interlocutor for G̈ottingen
mathematicians. He shared their appreciation of the Lorentz transformation as
a four-dimensional rotation; his derivation of the velocity addition theorem via
spherical trigonometry stimulated dozens of publicationsby mathematicians in
what became a mathematical sub-specialty: the non-Euclidean interpretation of
relativity theory (Walter 1998). When David Hilbert neededan assistant in physics,
he trusted Sommerfeld to find someone with the proper training.73Hilbert felt that
Sommerfeld’s view of theoretical physics could benefit research in G̈ottingen
(including his own), and after Poincaré (1909), Lorentz (1910), and Michelson
(1911), Sommerfeld received an invitation from the Wolfskehl Commission to
give lectures on “recent questions in mathematical physics,” in the summer of
1912.74

70 “Enthüllen erst in vier Dimensionen ihr inneres Wesen voller Einfachheit” in a paraphrase of
Minkowski 1909: 88. On this theme see also Sommerfeld 1910b:249–250.

71 Poincaŕe had shown that the stability of Lorentz’s deformable electron required the introduction of
a compensatory non-electromagnetic potential, producingwhat was later dubbedPoincaré pressure;
for details, see Cuvaj 1968 and Miller 1973: 300.

72 For an example of Sommerfeld’s later fascination with the electromagnetic world picture, see
Sommerfeld 1922: chap. 1, §2.

73 According to Reid 1970: 129, Sommerfeld sent his student P. P. Ewald to Hilbert in 1912.

74
Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, geschäftliche
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In the direction of physics, as we have mentioned, Sommerfeld rendered Min-
kowskian relativity comprehensible to physicists by introducing it in vector form.
When chosen by the German Physical Society to deliver a report on the theory of
relativity for the Karlsruhe meeting of the German Association in 1911, Sommer-
feld announced that in the six years since Einstein’s publication, the theory had
become the “secure property of physics” (Sommerfeld 1911: 1057). His avowed
enthusiasm for the theory, made manifest in publications, lectures and personal
contacts, was essential in making this statement ring true.

3.2. MATHEMATICIANS AND MINKOWSKIAN RELATIVITY

At the same time, there were many relativists who were convinced that the theory of
relativity belonged to mathematics. Physicists typicallyrejected the Minkowskian
view of the mathematical essence of the principle of relativity, but the message
was heard in departments of mathematics around the world. Mathematicians
were already familiar with the concepts and techniques frommatrix calculus,
hyperbolic geometry and group theory employed in Minkowski’s theory, and were
usually able to grasp its unified structure with ease. As Hermann Weyl recalled
in retrospect, relativity theory seemed revolutionary to physicists, but it had a
pattern of ideas which made a perfect fit with those already a part of mathematics
(Weyl 1949: 541). Harry Bateman saw the the principle of relativity as unifying
disparate branches of mathematics such as geometry, partial differential equations,
generalized vector analysis, continuous groups of transformations, and differential
and integral invariants (Bateman et al. 1911: 500). Mathematicians, from graduate
students to full professors, some of whom had never made the least foray into
physics, answered the call to study and develop the theory. According to our
study (1996: chap. 4), between 1909 and 1915, sixty-five mathematicians wrote
151 articles on non-gravitational relativity theory, or one out of every four articles
published in this domain. In 1913, mathematicians publishing articles worldwide
on the theory of relativity (22 individuals) outnumbered their counterparts in both
theoretical (16) and non-theoretical (15) physics.75

In addition to writing articles, some of these mathematicians introduced the
theory of relativity to their research seminars, and taughtits formal basis to an
expanding student population eager to learn the “radical” theory of space-time. In
Germany, according to the listings in thePhysikalische Zeitschrift, out of thirty-
nine regular course offerings on the theory of relativity upto 1915, eight were
taught by mathematicians. This broad engagement with the theory of relativity
ensured the institutional integration and intellectual propagation necessary to the
survival of any research program.

While the impetus for mathematical engagement with the theory of relativity
had several sources, the practical advantages offered by the Minkowskian space-
time formalism were probably decisive for many ‘relativist’ mathematicians, who

Mitteilungen (1910): 13, 117; (1913): 18; Born 1978: 147.

75 These figures are based on primary articles only, excluding book reviews and abstracts; for details,
see the author’s Ph.D. dissertation (Walter 1996: chap. 4).
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almost invariably employed this formalism in their work. Minkowskian mathe-
maticians made significant contributions in relativistic kinematics and mechanics,
although their results were infrequently assimilated by physicists. A striking ex-
ample of this failure to communicate was pointed out by Stachel (1995: 278),
with respect tóEmile Borel’s 1913 discovery of Thomas precession.

Perhaps more significant to the history of relativity than any isolated mathe-
matical discovery was the introduction of a set of techniques and ideas to the
practice of relativity by Minkowskian mathematicians. In favor of this standpoint
we recall Stachel’s view (1989: 55) of the role of the rigidly-rotating disk problem
in the history of general relativity, and Pais’s conjecture(1982: 216) that Born’s
definition of the motion of a ’rigid’ body pointed the way to Einstein’s adoption
(in 1912) of a Riemannian metric in theEntwurf theory of gravitation and general
relativity. These are particular cases of a larger phenomenon; non-Euclidean and
nonstatic geometries were infused into the theory of relativity from late 1909 to
early 1913, as a by-product of studies of accelerated motionin space-time by the
Minkowskians Max Born, Gustav Herglotz, Theodor Kaluza,Émile Borel and
others (Walter 1996: chap. 2).

The clarion call to mathematicians did not come from Minkowski alone. Felix
Klein quickly recognized the great potential of Minkowski’s approach, integrating
Minkowski’s application of matrix calculus to the equations of electrodynamics
into his lectures on elementary mathematics (1908: 165). The executive com-
mittee of the German Society of Mathematicians, of which Klein was a member,
chose geometric kinematics as one of the themes of the society’s next annual
meeting in Salzburg, but Klein did not wait until the fall to give his own view
of this subject.76 Developing his ideas before Göttingen mathematicians in April
1909, Klein pointed out that the new theory based on the Lorentz group (which he
preferred to call “Invariantentheorie”) could have come from pure mathematics
(1910: 19). He felt that the new theory was anticipated by theideas on geometry
and groups that he had introduced in 1872, otherwise known asthe Erlangen
program (see Gray 1989: 229). The latter connection was not one made by Min-
kowski, yet it tended to anchor the theory of relativity evermore solidly in the
history of late nineteenth century mathematics (for Klein’s version see 1927: 28).

The subdued response of the physics elite towards Minkowskian relativity con-
strasts with the enthusiasm displayed by Göttingen mathematicians. Of course,
Minkowski’s sudden death just months after the Cologne meeting may have influ-
enced early evaluations of his work. David Hilbert’s appreciation of Minkowski’s
lecture, for example, was published as part of an obituary. In Hilbert’s account
appeared nothing but full agreement with the views expressed by Minkowski, in-
cluding the assessment of the contributions of Lorentz and Einstein. A few years
later, Hilbert portrayed Einstein’s achievement as more fundamental than that of
Minkowski, although this characterization appeared in a letter requesting financial

76 On the research themes chosen by the German Society of Mathematicians and Klein’s role in
promoting applied mathematics, see Tobies 1989: 229.
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support for visiting lecturers in theoretical physicists.77

The axiomatic look of the theory presented by Minkowski in the Grundglei

chungen was perfectly in line with Hilbert’s own aspirations for themathemati-
zation of physics, which he had announced as number six in hisfamous list of
worthy problems (Hilbert 1900; Rowe 1995; Corry 1996). In Hilbert’s view, Min-
kowski’s greatest positive result was not the discovery of the world postulate, but
its application to the derivation of the basic electrodynamic equations for matter in
motion (MinkowskiGS: I, xxv). Hilbert did not publish on the non-gravitational
theory of relativity, but like Einstein, he borrowed Minkowski’s four-dimensional
formalism for his work on the general theory of relativity in1915 (Hilbert 1916).

In one sense, Minkowski’s theory was the fruit of Hilbert’s concerted efforts,
first in bringing Minkowski to G̈ottingen from Zurich, then in creating jointly-
led advanced seminars to enhance his friend’s considerableknowledge and skills
in geometry and mechanics, and to direct these toward the development of an
axiomatically-based physics. The success of Minkowski’s theory was also Hil-
bert’s success and was, as David Rowe has remarked, a major triumph for the
Göttingen mathematical community (Rowe 1995: 24). In 1909, on the occasion
of Klein’s sixtieth birthday, and in the presence of Henri Poincaŕe, David Hilbert
offered his thoughts on the outlook for mathematics:

What a joy to be a mathematician today, when mathematics is seen sprouting
up everywhere and blossoming, when it is shown ever more to advantage in
application in the natural sciences as well as in the philosophical direction,
and stands to reconquer its former central position.78 (Hilbert 1909b)

Minkowski’s theory of relativity was no doubt a prime example for Hilbert of the
reconquest of physics by mathematicians.

So far we have encountered the responses to Minkowski’s workby his G̈ottingen
colleagues, who of course had a privileged acquaintance with his approach to
electrodynamics. In this respect, most mathematicians were in a position closer
to that of our third and final illustration of mathematical responses to the Cologne
lecture, from Guido Castelnuovo. This case, however, is chosen primarily for its
bearing on Minkowski’s interpretation of Einsteinian kinematics, and should not
be taken as definitive of mathematical opinion of his work outside of G̈ottingen.

Castelnuovo was a leading figure in algebraic geometry, a professor of mathe-
matics at the University of Rome and president of the ItalianMathematical Society.
In an article published inScientia, he reviewed the notions of space and time ac-
cording to Minkowski, closely following the thematic progression of the Cologne
lecture. With an important difference, however: when Castelnuovo came to dis-

77 Hilbert to Professor H. A. Kr̈uss, undated typescript, Niedersächsische Staats- und Universitäts-
bibliothek, HilbertNachlaß 494. Hilbert gave Einstein credit for having drawn the “fulllogical
consequence” of the Einstein addition theorem, while the “definitive mathematical expression of
Einstein’s idea” was left to Minkowski. See also Pyenson 1985: 192.
78 “Lust ist er heute, Mathematiker zu sein, wo allerwegen die Math. emporspriesst und die emporge-
sprossene erblickt, wo in ihrer Anwendung auf Naturwissenschaft wie andererseits in der Richtung
nach der Philosophie hin die Math. immer mehr zur Geltung kommt und ihre ehemalige zentrale Stel-
lung zur̈uckzuerobern ein Begriff steht.” For a full translation of Hilbert’s address, differing slightly
from my own, see Rowe 1986: 76.
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cuss the difference between classical and relativistic space-time, he credited the
latter to Einstein instead of Minkowski. What is more, whereMinkowski main-
tained that Einstein didnot modify the classical notion of space, Castelnuovo
insisted upon the contrary:

The statement that the velocity of light is always equal to 1 for any observer
is equivalent to the statement that a change in the temporal axis also brings
a change to the spatial axes.79 (Castelnuovo 1911: 78)

In light of our earlier reconstruction of Minkowski’s argument, it would seem
that Castelnuovo denied the possibility of the interpretation imputed to Einstein
by Minkowski, in which a rotation of the temporal axis left the spatial axis
unchanged; in Castelnuovo’s view, Einstein’s theory required that the temporal
and spatial axes rotate together. From a disciplinary standpoint, it is remarkable
that Castelnuovo claimed to be giving an authentic account of Minkowski’s view

of Einstein’s kinematics.
Since Castelnuovo apparently contested, and effectively silenced the reasoning

given by Minkowski to differentiate his theory from that of Einstein, he might
have gone on to assert the equivalence of the two theories. Instead, he affirmed
one of Minkowski’s metatheoretical claims. Following his expośe of classical and
Einsteinian kinematics, Castelnuovo reiterated that in the latter, a rotation of the
temporal axis is necessarily accompanied by a rotation of the spatial axes. He
continued:

In truth, this change could be perceived solely by [an observer moving
with the speed of light]. Yet if our senses were sufficiently acute, certain
differences in the details of the presentation of phenomenawould not escape
us.80 (Castelnuovo 1911: 78)

Despite his destruction of the basis to Minkowski’s priority claim, Castelnuovo ac-
knowledged the cogency of his geometric approach, while recognizing the change
in the concept of space brought about by Einsteinian relativity. The perception of
the aforementioned rotation of the spatial axes concomitant with a rotation of the
temporal axis required either the adoption of Minkowski’s point of view, or the
results of experimental physics. Of course, this was a paraphrase of Minkowski;
we saw earlier how he conceded that the results of experimental physics had led to
the discovery of the principle of relativity, and argued that pure mathematics could
have done as well without Michelson’s experiment. For Castelnuovo, the accep-
tance of Minkowski’s metatheoretical view of the mathematical essence of the
principle of relativity apparently did not conflict with a rejection of his theoretical
claim on a new view of space.

79 “Affermare che la velocit̀a della luce vale sempre 1, qualunque sia l’osservatore, equivale ad asserire
che il cambiamento nell’asse del tempo porta pure un cambiamento nell’asse dello spazio.”
80 “Il cambiamento a dir vero sarebbe solo percepito dal demonedi Minkowski. Ma di qualche
differenza nelle particolarità dei fenomeni dovremmo accorgerci noi pure, quando i nostrisensi
fossero abbastanza delicati.” The artifice of a demon—recalling Maxwell’s demon—was attributed to
Minkowski by Castelnuovo earlier in his article, and connected to H. G. Wells’ writings. According
to Castelnuovo, Minkowski “immagina uno spirito superioreal nostro, il quale concepisca il tempo
come une quarta dimensione dello spazio, e possa seguire l’eroe di un noto romanzo di Wells nel suo
viaggio meraviglioso attraverso ai secoli” (Castelnuovo 1911: 76).
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4. Concluding remarks

Minkowski’s semi-popular Cologne lecture was an audaciousattempt, seconded
by Göttingen mathematicians and their allies, to change the wayscientists under-
stood the principle of relativity. Henceforth, this principle lent itself to a geometric
conception, in terms of the intersections of world-lines inspace-time. Considered
as a sales pitch to mathematicians, Minkowski’s speech appears to have been very
effective, in light of the substantial post-1909 increase in mathematical familiarity
with the theory of relativity. Minkowski’s lecture was alsoinstrumental in attract-
ing the attention of physicists to the principle of relativity. The G̈ottingen theorists
Walter Ritz, Max Born and Max Abraham were the first to adopt Minkowski’s for-
malism, and following Sommerfeld’s intervention, the space-time theory seduced
Max von Laue and eventually even Paul Ehrenfest, both of whomhad strong ties
to Göttingen.

For a mathematician of Minkowski’s stature there was littleglory to be had
in dotting thei ’s on the theory discovered by a mathematically unsophisticated,
unknown, unchaired youngster. In choosing to publish his space-time theory,
Minkowski put his personal reputation at stake, along with that of his university,
whose identification with the effort to develop the electromagnetic world picture
was well established. As a professor of mathematics in Göttingen, Minkowski
engaged the reputation of German mathematics, if not that ofmathematics in
general. From both a personal and a disciplinary point of view, it was essential for
Minkowski to show his work to be different from that of Lorentz and Einstein. At
the same time, the continuity of his theory with those advanced by the theoretical
physicists was required in order to overcome his lack of authority in physics. This
tension led Minkowski to assimilate Einstein’s kinematicswith those of Lorentz’s
electron theory, contrary to his understanding of the difference between these
two theories. Minkowski was ultimately unable to detach histheory from that of
Einstein, because even if he convinced some mathematiciansthat his work stood
alone, the space-time theory came to be understood by most German physicists as
a purely formal development of Einstein’s theory.

Einstein, too, seemed to share this view. It is well known that after unifying
geometry and physics on electrodynamic foundations, Minkowski’s theory of
space-time was instrumental to the geometrization of the gravitational field. In
one of Einstein’s first presentations of the general theory of relativity, he wrote
with some understatement that his discovery had been “greatly facilitated” by the
form given to the special theory of relativity by Minkowski (Einstein 1916: 769).

The pronounced disciplinary character of this episode in the history of relativ-
ity is undoubtedly linked to institutional changes in physics and mathematics in
the decades preceding the discovery of the theory of relativity. For some math-
ematicians, the dawn of the twentieth century was a time of conquest, or rather
reconquest, of terrain occupied by specialists in theoretical physics in the latter
part of the nineteenth century. In time, with the growing influence of this new
sub-discipline, candidates for mathematical chairs were evaluated by theoretical
physicists, and chairs of mathematics and mathematical physics were converted



78 Scott Walter

to chairs in theoretical physics. After a decade of vacancy,Minkowski’s chair in
Zurich, for example, was accorded to Einstein.81 It seems that a critical shift took
place in this period, as a new sense emerged for the role of mathematics in the
construction of physical theories, which was reinforced byEinstein’s discovery
of the field equations of general relativity. Mathematicians followed this move-
ment closely, as Tullio Levi-Civita, Hermann Weyl,Élie Cartan, Jan Schouten and
L. P. Eisenhart, among others, revived the tradition of seeking in the theories of
physics new directions for their research.

81 Robert Gnehm to Einstein, 8 December 1911 (EinsteinCP5: doc. 317).
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Appendix.Minkowski’s spacetime diagram and the Lorentz transfor

mations

The relation between the Minkowski space-time diagram and the special Lorentz
transformations is presented in many treatises on special relativity. One way of
recovering the transformations from the diagram, recalling a method outlined by
Max Laue (1911: 47), proceeds as follows.

A two-dimensional Minkowski space-time diagram represents general Carte-
sian systems with common origins, whereby we constrain the search to linear,
homogeneous transformations. For convenience, we letℓ = ct andβ = v/c.
These conditions determine the form of the desired transformations:

x = νℓ′ + ρx ′ and ℓ = λℓ′ + µx ′.

On a Minkowski diagram (where the units are selected so thatc = 1) we draw
the invariant curvesℓ2 − x2 = ℓ′2 − x ′2 = ±1 (see Figure 4).

l
x = l

l '

tan-1β

P

tan-1β
Q'

x1 Q

x'

1

P'

Figure 4. Minkowski diagram of systemsS andS′.

Next, we mark two points in the coordinate systemS(x, ℓ), P = (0, 1) andQ =
(1, 0), located at the intersections of theℓ-axis andx-axis with these hyperbolae.
Another systemS′ translates uniformly at velocityv = cβ with respect toS, such
that the origin ofS′ appears to move according to the expressionx = βℓ. This line
is taken to be theℓ′-axis. From the expression for the hyperbolae, it is evident
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that thex ′-axis and theℓ′-axis are mutually symmetric, and form the same angle
tan−1 β with the x-axis and theℓ-axis, respectively. The two points inS are
denoted here asP ′ = (0, 1) and Q′ = (1, 0) and marked accordingly, at the
intersections of the hyperbolae with the respective axes. The ℓ′-axis, x = βℓ,
intersects the hyperbolaℓ2 − x2 = 1 at P ′. Using this data, we solve for the
coefficientsν andλ:

ν =
β

√

1 − β2
and λ =

1
√

1 − β2
.

Applying the same reasoning to thex ′-axis (x = ℓ β), we solve for the coef-
ficientsρ andµ, evaluating the expressions forx andℓ at the intersection of the
x ′-axis with the hyperbolaℓ2 − x2 = −1, at the point labeledQ′, and we find

ρ =
1

√

1 − β2
and µ =

β
√

1 − β2
.

Substituting these coefficients into the original expressions forx andℓ, we obtain
the following transformations:

x =
x ′ + βℓ′
√

1 − β2
and ℓ =

ℓ′ + βx ′
√

1 − β2
.

The old form of the special Lorentz transformations is recovered by substituting
ℓ = ct andβ = v/c,

x =
x ′ + vt ′

√

1 − v2/c2
and t =

t ′ + vx ′/c2

√

1 − v2/c2
.

Invoking the property of symmetry, the transformations forx ′ and t ′ may be
calculated in the same fashion as above, by starting withS′ instead ofS.
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ihre Beziehungen zum Geistesleben der Gegenwart. Wissenschaft und Hypothese 9.
Leipzig & Berlin: Teubner.

VOLTERRA, Vito. (1912). Lectures Delivered at the Celebration of the 20th Anniversary of
the Foundation of Clark University. Worcester: Clark University.

WALTER, Scott. (1996). “Hermann Minkowski et la mathématisation de la th́eorie de la
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