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1 Introduction
The history of relativity is structured for most commentators by two landmark discoveries due
to Albert Einstein: the special theory (1905) and the general theory of relativity (1915). To
get from one theory to the other, we know that Einstein relied on a certain number of funda-
mental concepts, such as the equivalence principle, and a few key mathematical techniques,
for instance, the absolute tensor calculus of Gregorio Ricci-Curbastro and Tullio Levi-Civita.
Einstein also had need of a third theory and technique, elaborated by his former mathematics
professor, Hermann Minkowski (1864–1909), although he did not recognize this for several
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years. In this paper, we examine the fortunes of Minkowski’s space-time theory from 1908 to
1916. Our focus is on the emergence of Minkowski’s four-dimensional formalism as a stan-
dard technique in theoretical physics, and we investigate one aspect of this history in some
detail: the reformulation and reinterpretation of the laws of special relativity in the language of
non-Euclidean geometry. The related work done on the space-time theory, or what we call the
“non-Euclidean style” of Minkowskian relativity, provides an example of the geometrization of
physics brought about by Minkowski and his followers.

In order to situate our topic in a broader scientific context, we first describe the status of
applications of non-Euclidean geometry in physics around the turn of the century. Next, we
present a quantitative overview of publications on Minkowskian relativity for the period 1908–
1915. We then review Minkowski’s appeal to non-Euclidean geometry, and link this to the
mixed reception of his work. There follows a comparative study of the emergence and devel-
opment of the non-Euclidean style in selected works by Arnold Sommerfeld, Alfred A. Robb,
Vladimir Varičak, Gilbert N. Lewis, Edwin B. Wilson and Émile Borel.

2 Pre-Minkowskian applications of non-Euclidean geometry
in physics

At the end of the nineteenth century, several mathematicians showed an interest in applying
non-Euclidean geometry to physics. The titles listed in Duncan Sommerville’s 1911 bibliogra-
phy of non-Euclidean and n-dimensional geometry give one an idea of the level of activity in
this area. For the period from 1890 to 1905, we find a total of forty-nine titles on kinematics
or dynamics in non-Euclidean space,1 to be compared with a total of over two thousand titles
covering all aspects of non-Euclidean and n-dimensional geometry published during the same
period.

The title count in Sommerville’s bibliography points to a modest trend of physical applica-
tions of non-Euclidean geometry, but says little of mathematicians’ attitudes toward the phys-
ical significance of non-Euclidean and n-dimensional geometry. According to a well-known
doctrine formulated by the French mathematician Henri Poincaré (1854–1912), the geometry
realized in physical space can not be determined in an unambiguous fashion. The axioms of
geometry are not synthetic a priori judgments, as Kant believed, but freely-stipulated conven-
tions. However, all conventions are not equal. “Euclidean geometry,” Poincaré insisted, “is and
will remain the most convenient.”2

Over the years, several commentators (including Jammer 1960, 163, and Kline 1972, 922)
have considered Poincaré’s doctrine as the dominant one among turn-of-the-century mathe-
maticians. Yet not a single geometer supported Poincaré’s extreme position on the nature of
space. Anti-conventionalists included Jacques Hadamard and Émile Picard in France, Federigo
Enriques, Gino Fano and Francesco Severi in Italy, Heinrich Liebmann, Eduard Study, Aurel
Voss and David Hilbert in Germany. According to these mathematicians, the geometry of space
was subject in principle to empirical determination, just as Helmholtz and other physicists had
claimed (Walter 1997, 104).

As for the claim that Euclidean geometry would forever remain the most convenient, the
theoretical physicists Ernst Mach and Ludwig Boltzmann both implicitly took exception to
Poincaré’s assumption that the laws of physics could (and would) be adjusted in order to save
Euclidean geometry (Walter 1997, 110-111). The convenience of non-Euclidean geometry for
investigations in certain domains of pure mathematics, on the other hand, was widely acknowl-
edged by mathematicians by 1900. As Christian Houzel observes (1991, 179), Poincaré’s use
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of hyperbolic geometry to demonstrate the existence of Fuchsian functions in 1880 was path-
breaking in this regard (see Gray & Walter 1997).

Some of the abstract questions which lent themselves to the techniques of non-Euclidean
geometry had strong links to the problems of physics. Perhaps the best-known example of
a crossover of this sort is Hertz’s mechanics. While he assumed material points to move in
Euclidean space and absolute time, Hertz applied variational methods in an n-dimensional
configuration space, in which the number of dimensions corresponds to the degrees of freedom
of the system under investigation. This geometrical interpretation of Hamiltonian mechan-
ics, however, was criticized for its hypothetical nature and scant results by both Poincaré and
Boltzmann.3 Interest in such efforts abided nonetheless; in particular, readers appreciated the
sophistication of the methods employed to solve dynamics problems in non-Euclidean spaces
of n dimensions.4

Starting in the 1890s, the multiplication of university courses dedicated to non-Euclidean
geometry fostered the diffusion of mathematical techniques used in this area. The universities
of Göttingen, Cambridge, and Johns Hopkins offered lecture courses of this sort at the end
of the nineteenth century. In the years 1902-1904, according to listings in the Jahresbericht
der deutschen Mathematiker-Vereinigung, five German universities offered courses on non-
Euclidean geometry: Leipzig, Greifswald, Münster, Marburg and Königsberg.

In connection with these courses, geometers published textbooks outlining the history and
formal development of mathematical methods of non-Euclidean geometry, which likewise fa-
vored the dissemination of knowledge in this domain. Here non-Euclidean geometry was pre-
sented as a unified intellectual field, which could be approached from three principal directions:
projective geometry, differential geometry, and axiomatics. The emphasis given to any one ap-
proach varied substantially from place to place. The Göttingen mathematician Felix Klein
(1849–1925), for example, in his 1889–1890 lectures on non-Euclidean geometry, elaborated
projective methods in great detail, wasting little time on other approaches (Klein 1890a). Even
so, Klein saw a fundamental unity in the subject of non-Euclidean geometry. Rather than a het-
erogeneous collection of abstruse mathematics, non-Euclidean geometry was in Klein’s view a
“concrete discipline” (reale Disziplin).5

More balanced than Klein’s text are the later books by Heinrich Liebmann (1905) and
Roberto Bonola (1906), which include chapters on hyperbolic trigonometry, Cayley geometry,
differential geometry and axiomatics. For Liebmann, Bonola and others, the techniques of pro-
jective geometry, differential geometry and the axiomatic method were unified by their object,
and in this sense, their writings contributed toward the intellectual unification of this emergent
subdiscipline.

This unified image was also propagated by lecturers at scientific meetings. An oft-cited
example is the glowing report on the state of hyperspace and non-Euclidean mechanics (includ-
ing that of Hertz), read by the Kiel mathematician Paul Stäckel (1862–1919) at the the 1903
meeting of the German Association in Kassel. Far from the idle mathematical investigation of
abstruse details some believed it to be, Stäckel considered the development of applications of a
general mechanics to different branches of physics to hold great promise.6

In summary, by the first years of the twentieth century, non-Euclidean geometry had found
a respectable place in the mathematics curriculum of several German universities, while the
techniques of non-Euclidean geometry were further diffused on an elementary level through
textbooks, which often portrayed the mechanics of non-Euclidean space as the very horizon
of mathematical research. In contrast to the amount of publicity they received, applications of
non-Euclidean geometry to physics by leading practitioners produced slim theoretical results,
the value of which was outstripped by the technical intricacy of the methods deployed to obtain
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them. Nevertheless, some mathematicians and theoretical physicists continued to study and
develop these methods and applications for their intrinsic interest.

3 A quantitative view of two geometrical approaches to rel-
ativity theory

When the first papers on the principle of relativity appeared in 1905, physicists generally pre-
sented their results in mechanics and electrodynamics using either Cartesian coordinate or vec-
tor methods. It was also about 1905 when Oliver Heaviside’s vector calculus became popular
among germanophone electrodynamicists (Reich 1996, 205), who naturally employed the same
formalism in their studies of the principle of relativity.

In the spring of 1908, Hermann Minkowski published a new four-dimensional matrix for-
malism designed to take full advantage of the known covariance of physical laws with respect
to the Lorentz group. Physicists developed a four-dimensional vector and tensor formalism on
the basis of Minkowski’s work, which we refer to as the space-time formalism. By this term we
mean a four-dimensional calculus in which the temporal coordinate is imaginary and treated on
an equal footing with the real spatial coordinates.

Applications of hyperbolic functions to relativity constitute the non-Euclidean style of Min-
kowskian relativity. Historically, the style is linked to Minkowski’s work; we will see later
exactly how Minkowski used hyperbolic geometry to interpret the Lorentz transformation. Al-
though “hyperbolic” and “non-Euclidean” geometry will refer here to geometry of constant
negative curvature, the use of these terms varied in the period under consideration. The mod-
ern terminology of Minkowski space, or more generally, of pseudo-Euclidean spaces, had yet
to enter the vocabulary of most mathematicians and physicists. Different writers described
Minkowski’s four-dimensional geometry as either “Euclidean,” “non-Euclidean,” or even as
“hyperbolic.”

The non-Euclidean style gave rise to a four-dimensional vector calculus like the space-time
formalism, but one involving only real coordinates. The difference between the two formalisms
hinges upon the treatment of the time coordinate t. In the space-time formalism, the temporal
coordinate u is imaginary, u ≡ ict, where c is the universal light constant, and i =

√
−1.

Imaginary coordinates are alien to the non-Euclidean calculus, which employs a different sub-
stitution for the temporal coordinate, ℓ ≡ ct.

A rough comparison of the relative standing among scientists of the space-time formalism
and the non-Euclidean style may be made, based on a simple frequency count based on usage in
published articles. Our bibliographic database is compiled from titles in Lecat and Lecat-Pierlot
(1924), with supplementary references from Hentschel (1990) and our own research. It covers
articles published on relativity theory from 1908 through 1915 in West-European languages,
in 130 journals (566 articles) and numerous anthologies (63 articles), for a total of 629 titles.
We consider as an element of the set of relativist writings any publication in which the term
“relativity” is invoked. In addition to this linguistic token, we seek a second, hybrid token,
enlarging the relativist set with publications dealing with the Lorentz transformations in either
a formal or a discursive fashion. For the sake of simplicity, we exclude from consideration all
articles with titles invoking gravitation.7

Figure 1 compares the quantitative evolution of articles employing the space-time formal-
ism and the non-Euclidean style, from 1908, when Minkowski’s fundamental paper appeared,
until 1916. Totalling the numbers of articles for this period, we find that space-time articles
outnumber non-Euclidean publications by four to one.8 Articles featuring one or both of the



S. Walter 5

FIG 1. The space-time formalism and the non-Euclidean style (N = 144).

approaches (144 titles by 62 authors) account for about one-fifth of all articles published on
relativity between 1908 and 1916.

It is instructive to compare the publication details relating to our categories. For example,
although a quarter of all relativist publications used the space-time formalism, they appeared
in only thirty-four journals. Physics journals, which publish almost half of all relativist articles
(259 of 566), also carry half the space-time articles (51 of 100), and roughly a third of the
non-Euclidean articles. By way of comparison, mathematics journals account for a tenth of
all relativist articles, a fifth of the space-time articles, and a fifth of the non-Euclidean inter-
pretations of relativity theory. The publishing organs of scientific academies and institutions
account for most of the remaining articles in these categories. It is clear from these figures that
articles employing the non-Euclidean style or the space-time formalisms were not excluded
from physics journals in a systematic fashion.9

A more detailed image of the disciplinary structure of publications in this domain may be
formed by correlating articles to the author’s professional affiliation. The criterion for such af-
filiation in this instance is institutional: for the purposes of our study, disciplinary membership
is determined by the title of the chair on which the writer depended. For non-titular university
instructors, we determine affiliation by the position title, while for independent scholars, we
use the dissertation advisor’s discipline.

With these conventions, we find that our mathematicians are responsible for slightly more
than a quarter of the relativist articles, including two-fifths of all space-time articles, and all
but three of the thirty articles employing the non-Euclidean style. The remaining twenty-seven
non-Euclidean articles come from a group of eleven mathematicians. Our physicists, by com-
parison, write nearly three-fifths of the space-time articles, and two-thirds of all relativist ar-
ticles. Together, mathematicians and physicists account for over nine-tenths of the relativist
articles from 1908 to 1916.

4 Minkowski’s use of non-Euclidean geometry
The Göttingen professor of mathematics Hermann Minkowski delivered one of the first exposés
of his views of the principle of relativity in November, 1907, before the assembled members
of the Göttingen Mathematical Society. Rarely mentioned in the secondary literature, this
lecture is nonetheless of particular interest, because it represents the only substantial statement
of Minkowski’s thoughts upon the principle of relativity before his discovery of the notion
of proper time (Eigenzeit), with which he eventually elaborated the structure of space-time in
terms of intersections of four-dimensional point trajectories (or “world-lines”) and a Lorentz-
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covariant mechanics (Walter 1996, 101). Although one of the two surviving typescripts of the
lecture bears several annotations in Minkowski’s hand, it is not clear that the text was intended
for publication. The annotated typescript is our principle documentary source in this section.10

“The world in space and time,” Minkowski claimed in his opening remarks, “is, in a certain
sense, a four-dimensional non-Euclidean manifold.”11 His lecture would address the laws of
physics, but he began by pointing out a “purely mathematical relation,” concerning the differ-
ential equations used by the Dutch theorist H. A. Lorentz (1853–1928) as the foundation of
his successful theory of electrons. These equations, Minkowski observed, were obviously in-
dependent of the particular choice of Cartesian axes in space, and yet they possessed a further
symmetry, one not apparent in the notation ordinarily used for their expression. Minkowski
then laid out the basis for a new system of notation, which he said had to do with the quadratic
form

x2 + y2 + z2 − c2t2,

where c stands for the velocity of propagation of light in empty space. Physical laws were
to be expressed with respect to a four-dimensional manifold with coordinates x1, x2, x3, x4,
where ordinary Cartesian coordinates x, y, and z, went over into the first three, and the fourth
was defined to be an imaginary time coordinate, x4 ≡ it. When the units are chosen such that
c = 1, Minkowski remarked, the above quadratic expression passes over to the form

x21 + x22 + x23 + x24.

Implicitly, Minkowski took as his formal starting point the final section of Poincaré’s mem-
oir on the dynamics of the electron (Poincaré 1906, § 8). He acknowledged the French mathe-
matician’s use of an imaginary temporal coordinate in the final section of his lecture, albeit in
a rather oblique fashion, when he observed that Poincaré’s search for a Lorentz-covariant law
of gravitation involved the consideration of Lorentz-group invariants (Minkowski, “Das Rela-
tivitätsprinzip”, 16, undated typescript, Cod. Ms. Math. Arch. 60: 3, Niedersächsische Staats-
und Universitätsbibliothek, Göttingen). Poincaré used three real space coordinates and one
imaginary temporal coordinate to define four-dimensional vectors for position, velocity, force,
and force density. Did Minkowski then consider Poincaré to have anticipated his planned re-
formulation of the laws of physics in four dimensions?

As mentioned above, Minkowski described his contribution in terms of a notational im-
provement which revealed the symmetry shared by a certain quadratic form and the Maxwell-
Lorentz electromagnetic field equations. Indeed, Minkowski distinguished his work on the
principle of relativity from that of Einstein, Poincaré and Max Planck on precisely this basis:

Here I will bring to the notation from the beginning that symmetry, whereby the
form of the equations, as I believe, really becomes extremely transparent. This is
something brought out by none of the previously-mentioned authors, not even by
Poincaré himself.12 (Minkowski, “Das Relativitätsprinzip”, 3, undated typescript,
Cod. Ms. Math. Arch. 60: 3, Niedersächsische Staats- und Universitätsbibliothek,
Göttingen)

In other words, Minkowski presented his main result as a notational one in which the Lorentz-
covariance of the electromagnetic equations appeared as never before. He insisted here upon
the fact that Poincaré did not write the Maxwell-Lorentz equations in four-dimensional terms.

This was hardly an oversight on Poincaré’s part. The French scientist did not propose a
four-dimensional vector calculus for general use, nor had he any intention of developing such a
calculus for physics. While Poincaré recognized the feasibility of a translation of physics into
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the language of four-dimensional geometry, he said this would be “very difficult and produce
few benefits.” In this sense, he felt a four-dimensional vector calculus would be “much like
Hertz’s mechanics.”13 Whether or not Minkowski was aware of Poincaré’s view, it is quite
clear that he did not share his opinion.

Once he had presented his central finding, Minkowski still had to show what a four-di-
mensional vector calculus has to do with a non-Euclidean manifold. When he reached the part
of his lecture dealing with mechanics, Minkowski explained himself in the following way. The
tip of a four-dimensional velocity vector w1, w2, w3, w4, Minkowski stipulated,

is always a point on the surface

w2
1 + w2

2 + w2
3 + w2

4 = −1 (1)

or, if you wish, on
t2 − x2 − y2 − z2 = 1, (2)

and represents at the same time the four-dimensional vector from the origin to this
point, and this also corresponds to null velocity, to rest, a genuine vector of this
sort. Non-Euclidean geometry, of which I spoke earlier in an imprecise fashion,
now unfolds for these velocity vectors.14 (Minkowski, “Das Relativitätsprinzip”,
7, undated typescript, Cod. Ms. Math. Arch. 60: 3, Niedersächsische Staats- und
Universitätsbibliothek, Göttingen)

Many mathematicians in Minkowski’s audience probably recognized in (1) the equation of
a pseudo-hypersphere of unit imaginary radius, and in (2) its real counterpart, the two-sheeted
unit hyperboloid. Formally equivalent, both hypersurfaces provide a basis for a well-known
model of non-Euclidean space of constant negative curvature, popularized by Helmholtz.15

Although Minkowski did not bother to unfold the geometry of velocity vectors, in the hyper-
surfaces (1) and (2), we have the premises of an explanation for Minkowski’s description of the
world as being–in a certain sense–a four-dimensional non-Euclidean manifold.

The conjugate diameters of the hyperboloid (2), Minkowski went on to explain, give rise
to a geometric image of the Lorentz transformation. Any point on (2) can be taken to lie on
the t−diameter, and this change of axes corresponds to an orthogonal transformation of both
the time and space coordinates which, as Minkowski observed, is a Lorentz transformation.
Thus the three-dimensional hyperboloid (2) embedded in Minkowski’s four-dimensional space
affords an interpretation of the Lorentz transformation.

Over the years, Minkowski’s terminology has generated significant confusion among com-
mentators. In one sense, it appropriately underlined both the four-dimensionality of Minkow-
ski’s planned calculus, and the hyperbolic geometry of velocity vectors. Yet the label is flawed,
for the following reason: although both the pseudo-hypersphere (1) and the two-sheeted unit
hyperboloid (2) may be considered models of non-Euclidean space, neither one constitutes a
four-dimensional manifold. Minkowski was surely aware of this ambiguity when he maintained
that the label was only true “in a certain sense.”

In any case, Minkowski never again referred to a manifold as both four-dimensional and
non-Euclidean. Along with the problematic label, the geometric interpretation of velocity vec-
tors likewise vanishes from view in Minkowski’s subsequent writings. Felix Klein, for one,
regretted the change; in his opinion, Minkowski later hid from view his “innermost mathemat-
ical, especially invariant-theoretical thoughts” on the theory of relativity (Klein 1927, 75).

Six months after his lecture to the Göttingen Mathematical Society, Minkowski published
his first essay on the principle of relativity. Entitled “The Basic Equations of Electromagnetic
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Processes in Moving Bodies,” it presented a new theory of the electrodynamics of moving
media, incorporating formal insights of the relativity theories introduced earlier by Einstein,
Poincaré and Planck. For example, it took over the fact that the Lorentz transformations form
a group, and that Maxwell’s equations are covariant under this group. Minkowski also shared
Poincaré’s view of the Lorentz transformation as a rotation in a four-dimensional space with
one imaginary coordinate, and his five four-vector expressions.

These insights Minkowski developed and presented in an original, four-dimensional ap-
proach to the Maxwell-Lorentz vacuum equations, the electrodynamics of moving media, and
in an appendix, Lorentz-covariant mechanics. In the sophistication of its mathematical expres-
sion, Minkowski’s paper rivalled that of Poincaré, acknowledged by many to be the world’s
leading mathematician. One aspect of the principle of relativity, according to Minkowski, made
it an excellent object of mathematical study:

To the mathematician, accustomed to contemplating multi-dimensional manifolds,
and also to the conceptual layout of the so-called non-Euclidean geometry, adapt-
ing the concept of time to the application of Lorentz transformations can give rise
to no real difficulty.16 (Minkowski 1908, 69–70)

Understanding the concept of time in the theory of relativity, in other words, represented no
challenge for mathematicians because of their experience in handling similar concepts from
n-dimensional and non-Euclidean geometry. This is not the only time Minkowski encouraged
mathematicians to study the principle of relativity in virtue of its mathematical or geometri-
cal form. His Cologne lecture was to go even further in this direction, by suggesting that the
essence of the principle of relativity was purely mathematical (Walter 1999, §2.1). In the pas-
sage quoted above, Minkowski’s claim is a less general one, to the effect that mathematicians’
familiarity with non-Euclidean geometry would allow them to handle the concept of time in the
Lorentz transformations. Yet apart from this disciplinary aside, the subject of non-Euclidean
geometry is conspicuously absent from all that Minkowski published on relativity theory.

On the other hand, Minkowski retained the geometric interpretation of the Lorentz trans-
formations that had accompanied the now-banished non-Euclidean interpretation of velocity
vectors. In doing so, he elaborated the notion of velocity as a rotation in four-dimensional
space. He introduced a formula for the frame velocity q in terms of the tangent of an imaginary
angle iψ, such that

q = −i tan iψ = (eψ − e−ψ)/(eψ + e−ψ).

Minkowski could very well have expressed frame velocity in the equivalent form q = tanhψ,
where the angle of rotation is real instead of imaginary, and all four space-time coordinates are
real. He did not do so, but used the imaginary rotation angle iψ to express the special Lorentz
transformation in the trigonometric form:

x′1 = x1, x′2 = x2, x′3 = x3 cos iψ + x4 sin iψ, x′4 = −x3 sin iψ + x4 cos iψ.

The use of circular functions here underscores the fact that a special Lorentz transformation
is equivalent to a rotation in the (x3x4)−plane. Likewise, by expressing velocity in terms of
an imaginary rotation, Minkowski may have betrayed his knowledge of the formal connection
between the composition of Lorentz transformations and relative velocity addition, remarked
earlier by Einstein on different grounds (Einstein 1905, §5). However, Minkowski neither
mentioned the law of velocity addition, nor expressed it in formal terms.

Minkowski’s preference for circular functions may be understood in relation to his project
to express the laws of physics in four-dimensional terms. Four-dimensional vector algebra is a



S. Walter 9

FIG 2. Minkowski’s space-time diagram, after Minkowski (1909, 77).

natural extension of the ordinary vector analysis of Euclidean space when the time coordinate
is multiplied by

√
−1. Expressing the Lorentz transformation as a hyperbolic rotation would

have obscured the connection for physicists.
Mathematicians, on the other hand, had little use for vector analysis, and were unlikely to

be put off by the use of hyperbolic functions. Judging from his correspondence, Minkowski
was not shy of hyperbolic geometry. In a postcard sent to his former teacher and friend, the
Zürich mathematician Adolf Hurwitz (1859–1919), Minkowski described the “quintessence”
of his relativity paper as the “Principle of the Hyperbolic World.”17

The link to ordinary Euclidean space from four-dimensional space-time was one of the
themes Minkowski stressed in his lecture to the scientists assembled in Cologne for the an-
nual meeting of the German Association in September, 1908. Under the new space-time view,
Minkowski announced, “Three-dimensional geometry becomes a chapter of four-dimensional
physics.”18 In the same triumphant spirit, Minkowski suggested that his new four-dimensional
understanding of the laws of physics deserved its own label. The “Principle of the Hyperbolic
World” that he had tried on Hurwitz was shelved in favor of the more ecumenical “Postulate of
the Absolute World” (Minkowski 1909, 82). Although Minkowski explained this to mean that
only the four-dimensional world in space and time is given by phenomena (Minkowski 1909,
82), one suspects an inside joke with Hurwitz, since in the German mathematical community,
hyperbolic geometry was sometimes referred to as absolute geometry.

Although the lecture on “Space and Time” was read to the mathematics section of the
Cologne meeting, it recapitulated a selection of Minkowski’s results so that they could be
understood by those with little mathematical training. Notably, it displayed the fundamental
four-vectors of relativistic mechanics, while neglecting the finer points of his matrix calcu-
lus. Likewise, the above-mentioned interpretation of Lorentz transformations with respect to
a real hyperboloid (2) resurfaced in a two-dimensional version lending itself to graphical il-
lustration. Minkowski’s space-time diagram (see Figure 2) refers to an invariant hyperbola in
the (xt)−plane, t2 − x2 = 1, which is just equation (2) without the y and z coordinates. The
diagonals describing the equations x = t and x = −t correspond here to the paths of light
rays in empty space that pass through the origin of the coordinate system; in four-dimensional
space-time these rays form an invariant hypercone. While Minkowski did not bother to show
this himself, from the geometrical relations of the diagram one may derive the special Lorentz
transformation.19
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From a retrospective standpoint, Minkowski’s Cologne lecture was instrumental in trans-
forming the principle of relativity from a peculiar problem in electron dynamics into the most
celebrated discovery in contemporary theoretical physics. Several contemporary observers saw
in Minkowski’s formalism a new approach to the principle of relativity, yet one that shared with
the theories of Poincaré and Einstein the requirement of covariance of the laws of physics with
respect to the Lorentz transformations. Perhaps most importantly in this respect, Minkowski’s
four fundamental equations of electromagnetism were understood by Max Laue and others to
be a summary of atomistic electrodynamics in its entirety. Laue observed at the same time
that the proof that these equations satisfy the principle of relativity and the requirements of
conservation of energy and momentum resides in their form alone.20

In the period immediately following the Cologne lecture there was a significant upswing
in the number of publications mentioning the principle of relativity. By the end of 1909, Min-
kowski and five other theorists had published a total of fourteen articles using the space-time
formalism.21 Also important in the diffusion of the space-time formalism was Max Laue’s rel-
ativity textbook (Laue 1911), which extended Arnold Sommerfeld’s four-dimensional vector
algebra (Sommerfeld 1910a, 1910b) in a systematic and elegant approach to relativity theory.
Through the efforts of these physicists, and of others like Max Abraham (1910) and Gilbert
N. Lewis (1910a), Minkowski’s matrix calculus was transformed first into a convenient four-
dimensional vector analysis, and eventually into a tensor calculus.22 By 1911, four-vector and
six-vector operations featured prominently in the pages of the leading physics journal in Ger-
many, the Annalen der Physik. Out of the nine theoretical papers on relativity theory published
in the Annalen that year, eight applied the space-time formalism. By 1912, this formalism had
become the standard for advanced research in relativity.23

While the older coordinate and vector approaches to relativity were effectively displaced
from the Annalen by the space-time formalism, they did not disappear from use by any means.
The second edition of Laue’s textbook (Laue 1913), for example, which relies heavily upon
the new space-time formalism, includes an appendix on ordinary vector analysis. Of the four
textbooks available on the subject of relativity by 1914, three employ a mix of three and four-
dimensional entities (Laue 1911; Silberstein 1914; Cunningham 1914). Ludwig Silberstein’s
text is perhaps an extreme version of this eclectic approach to notation. In addition to Carte-
sian coordinates, ordinary space vectors, and space-time vectors, Silberstein introduced Cayley
matrices and quaternions, neither of which were to gain a significant following, however.

The exception to the rule of using notational shortcuts is Max B. Weinstein’s treatise (We-
instein 1913). A translator of Maxwell and Kelvin, the Berlin philosopher-physicist Weinstein
(1852–1918) was like Minkowski a Russian immigrant. While Weinstein dedicated his trea-
tise to the memory of Minkowski, he was still critical of his mathematical technique, finding
this (p. vi) “unspeakably difficult to understand.” The difficulty undoubtedly stemmed in part
from his lack of confidence in the complex quantities upon which Minkowski built his calcu-
lus. Weinstein deplored formulae with imaginary terms because they defied visualization; for
him they were unvorstellbar.24 The four-dimensional operators simply had to go, so Weinstein
expressed Minkowski’s theory in terms of either ordinary vectors or orthogonal Cartesian co-
ordinates, usually writing out every component in full. In doing so, Weinstein claimed (p. vi)
to have clarified Minkowski’s “brilliant achievement,” and “place[d] it on a human level.”

Two of Weinstein’s readers disagreed with him on this count. One of the critics was Roberto
Marcolongo (1862–1943), a professor of rational mechanics in Naples, who had his own three-
dimensional vector calculus to promote (Marcolongo 1914, 452, note 14). Along with Marco-
longo, Max Born (1882–1970), the Göttingen Privatdozent in theoretical physics and Minkow-
ski’s devoted disciple, decried Weinstein’s “heaps of formulæ” (Formelhaufen, Born 1914).
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The strident tone of Born’s review reflects his strong preference – shared by many theorists –
for vector and tensor formulations of the laws of physics.

From the above survey of publications in the Annalen der Physik, it appears that the space-
time formalism had gained the confidence of leading theorists by 1912. The vector and tensor
reformulation of Minkowski’s calculus played an essential role in this respect. Likewise, the
advocacy of respected theorists like Sommerfeld and Abraham no doubt encouraged others
to try out the space-time formalism. Perhaps more decisive in swaying opinion than either
the vectorial reformulation or the commanding example of leading theorists was the apparent
superiority of the space-time formalism over ordinary vector analysis or Cartesian coordinate
methods.

In order to understand better how the space-time formalism came to be the dominant style
in theoretical investigations concerning the principle of relativity, we must examine the content
of the relevant publications of the period. Through a close reading of the latter, we can try
to discern those features in the early applications of the space-time formalism which either
attracted, repelled, or left scientists indifferent. Within this interpretational framework, let us
review a selection of scientific responses to a peculiar, latent feature of Minkowskian relativity:
non-Euclidean geometry.

5 Non-Euclidean readings of Minkowski
Paul Mansion (1844-1919) was a Belgian mathematician, editor of the journal Mathesis and
author of over sixty articles on non-Euclidean geometry. In a review of Minkowski’s Cologne
lecture, Mansion shared his impression that, as far as he could tell, “consciously or uncon-
sciously (Minkowski) applies non-Euclidean geometry to physics.”25 For Mansion, moreover,
this physical application of non-Euclidean geometry “explains rather easily” both Lorentz’s
“paradoxical proposition” concerning the longitudinal contraction of bodies in motion, and
Einstein’s “complementary remark” on the equivalence of inertial frames of reference (Man-
sion 1909, 245).

Mansion’s review suggests that there was no real difficulty in considering Minkowski’s
work as the latest entrant in a fashionable trend of studies of non-Euclidean mechanics. Re-
viewing the bibliography of non-Euclidean and n-dimensional geometry mentioned above, the
British mathematician G. B. Mathews (1861–1922) felt it was “not unlikely” that the topics
covered would be “of wholly unexpected importance in the applications of mathematics to
physics.” Observing how the volumes of Minkowski’s collected memoirs formed the final en-
try of Sommerville’s list, the reviewer asked if anything could be “more suggestive” (Mathews
1912).

Minkowski’s suppression of all but the most vague reference to non-Euclidean geometry
may well have made his relativist publications more acceptable to physicists, but it did not
shield them from criticism on this ground. Less than two weeks after Minkowski’s theory of
the electrodynamics of moving media appeared in print, Einstein wrote to his wife with great
news: on the basis of Jakob Laub’s calculations, he had found an error concerning the definition
of ponderomotive force density.26 Together, Einstein and Laub came up with an alternative
definition.27 In a companion paper, they set about rederiving Minkowski’s equations using
ordinary vector analysis, because they felt Minkowski’s four-dimensional formalism asked too
much of the reader.28

Einstein and Laub were not favorably impressed by Minkowski’s four-dimensional calcu-
lus, and believed his theory of the electrodynamics of moving media to contain at least one
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incorrect formula. Naturally, Laub was curious to know what others thought about Minkow-
ski’s approach. He asked the Würzburg theoretical physicist Mathias Cantor (1861–1916) what
he considered to be the “real physical meaning of time as a fourth spatial coordinate” in Min-
kowski’s theory, without getting an answer. Recounting this episode in a letter to Einstein,
Laub opined that Cantor “let himself be impressed by non-Euclidean geometry.”29

In the spring of 1909, Max Planck (1858–1947), the leading spokesman for theoretical
physics in Germany, delivered a series of eight lectures at Columbia University. In the last of
these, he turned his attention to the principle of relativity. Planck lavished praise on Einstein
for his modification of the concept of time:

It need scarcely be emphasized that this new view of the concept of time makes the
most serious demands upon the capacity of abstraction and the imaginative power
of the physicist. It surpasses in boldness everything achieved so far in speculative
investigations of nature, and even in philosophical theories of knowledge: non-
Euclidean geometry is child’s play in comparison.30 (Planck 1910a, 117)

Planck certainly meant to underline Einstein’s accomplishment and its significant philosoph-
ical consequences. As John Heilbron observes, Planck was a key figure in securing accep-
tance of Einstein’s work in Germany.31 The comparison of non-Euclidean geometry to child’s
play, however, was most likely a rejoinder to Minkowski’s remark on time, according to which
mathematicians were uniquely well-equipped to understand the notion of time in the Lorentz
transformations.

Where Minkowski underlined the conceptual continuity of non-Euclidean geometry and the
notion of time in relativity, Planck refused the analogy, and emphasized the revolutionary nature
of Einstein’s new insight.32 For Planck, however, there was at least an historical similarity
between non-Euclidean geometry and relativity. The relativity revolution was similar to that
engendered by the introduction of non-Euclidean geometry: after a violent struggle, Planck
recalled, the Modernisten finally won general acceptance of their doctrine (Planck 1910b, 42–
43).

In his address to the German Association in September, 1910, Planck acknowledged that
progress in solving the abstract problems connected with the principle of relativity was largely
the work of mathematicians. The advantage of mathematicians, Planck noted (Planck 1910b,
42), rested in the fact that the “standard mathematical methods” of relativity were “entirely
the same as those developed in four-dimensional geometry.” Thus for Planck, the space-time
formalism had already become the standard for theoretical investigations of the principle of
relativity.

Planck’s coeditor at the Annalen der Physik, Willy Wien (1864–1928), reiterated the con-
trast between non-Euclidean geometry and physics in his review of Einstein’s and Minkowski’s
views of space and time. Wien portrayed Einstein’s theory of relativity as an induction from
results in experimental physics; here, according to Wien (1909, 30), there was “no direct point
of contact with non-Euclidean geometry.” Minkowski’s theory, on the other hand, was associ-
ated in Wien’s lecture with a different line of development: the abstract, speculative theories of
geometry invented by mathematicians from Carl Friedrich Gauss to David Hilbert.

Wien admitted there was something “extraordinarily compelling” about Minkowski’s view.
The whole Minkowskian system, he said, “evokes the conviction that the facts would have to
join it as a fully internal consequence.” As an example of this, he mentioned Minkowski’s
four equations of motion, the fourth of which is also the law of energy conservation (Min-
kowski 1909, 85). Wien nonetheless distanced himself from the formal principles embodied
in Minkowski’s contribution to relativity when he recalled that the physicist’s credo was not
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aesthetics but experiment. “For the physicist,” Wien concluded, “Nature alone must make the
final decision.”33

Certain experimental consequences of Minkowski’s theory of the electrodynamics of mov-
ing media awaited experimental investigation, which may be what motivated Wien’s conclu-
sion. At the time, new experiments designed to test the predictions of relativity theories were in
scarce supply. Among the best-known of these were the electron-deflection experiments run by
Walter Kaufmann and Alfred Bucherer, which gave conflicting results and elicited significant
controversy.34 Since Einstein’s theory of relativity and Minkowski’s space-time theory were
generally understood to stand or fall on the same empirical base, the comparison between them
could proceed only on either formal or methodological grounds.

In summary, certain mathematicians and physicists cast Minkowski’s work in a tradition of
research on non-Euclidean geometry. For the mathematicians Mansion and Mathews, relativity
theory was ripe for study and development by geometers. The physicists Planck and Wien,
on the other hand, denied any link between non-Euclidean geometry and Einstein’s theory of
relativity. But like Mansion and Mathews, Wien considered Minkowski’s theory to belong to a
tradition of speculative research in non-Euclidean geometry, strongly associated with Göttingen
mathematicians.

The responses to Minkowski’s theory reviewed in this section suggest that the value ac-
corded to Minkowski’s geometric approach to physics depended on professional affiliation. Yet
opinion of Minkowski’s work was certainly not divided along disciplinary lines in an absolute
sense. Not all relativist mathematicians admired Minkowski’s four-dimensional physics; Henri
Poincaré and Ebenezer Cunningham, for instance, both expressed a preference for Lorentz’s
approach to the electrodynamics of moving bodies (Poincaré 1912, 170; Cunningham 1912,
126). Likewise, several physicists, in particular those who had ties to Göttingen (Max Abra-
ham, Max Born, Arnold Sommerfeld), were convinced that the space-time formalism was su-
perior in some ways to the older methods.

6 A convenient guide: Arnold Sommerfeld on velocity com-
position

Minkowski’s visually-intuitive description of space-time geometry fired the imagination of
many a scientist, but in its first year of existence, his algebraic formalism made few inroads
into theoretical practice. During this period, his former assistant Max Born (1882–1970) was
the only one to apply the formalism (Born 1909b).

The first ones to comment in print on Minkowski’s theory, Einstein and Laub considered its
mathematical form an obstacle to comprehension, as mentioned above, and went on to rederive
its basic equations in the more familiar notation of vector calculus. Similarly, in his early work
on space-time mechanics, Philipp Frank (1884–1966) made no use of the four-dimensional
apparatus in which the theory was originally couched, relying instead upon ordinary vector
methods in all his calculations.35 These bright young theorists felt more comfortable with
ordinary vector analysis than with Minkowski’s matrix formalism, yet they were still able to
understand the theory, and to express it in more familiar terms.

When read by non-theorists, on the other hand, Minkowski’s publications triggered attacks
of mathematics anxiety. Even the watered-down version of the space-time theory presented in
Minkowski’s Cologne lecture repelled some physicists. For instance, Willy Wien’s cousin Max
(1866-1938), a physicist at Danzig Polytechnic, confided to his friend Arnold Sommerfeld that
reading Minkowski gave him vertigo:
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Sommer maintains that [Minkowski’s] speech in Cologne was simply grand; when
reading it, however, I always get a slight brain-shiver, now (that) space and time
appear conglomerated together in a gray, miserable chaos.36 (Max Wien to Arnold
Sommerfeld, February 16, 1909, Benz 1975, 71)

Thus unlike his mathematical colleague Julius Sommer (1871–1943), Max Wien was not in-
spired by the idea of referring the laws of physics to a space-time manifold. And while Wien
appeared to admit the validity of Minkowskian relativity, his willingness to develop the theory
and investigate its experimental consequences was undoubtedly compromised by its perceived
abstraction.

At the September, 1909, meeting of the German Association of Natural Scientists and
Physicians in Salzburg, Arnold Sommerfeld (1868–1951) attempted to spark physicists’ in-
terest in Minkowski’s formalism. A former assistant to Felix Klein, Sommerfeld succeeded
Ludwig Boltzmann in the Munich chair of theoretical physics in 1906.37 At first skeptical of
Einstein’s theory, Sommerfeld found Minkowski’s space-time theory highly persuasive, and
following Minkowski’s death, became its most distinguished advocate in physics (Walter 1999,
§3.1).

In his Salzburg talk, Sommerfeld insisted upon the practical advantage in problem solving
offered by the space-time view:

Minkowski’s profound space-time view not only facilitates the general construc-
tion of the relative-theory in (a) systematic way, but also proves successful as a
convenient guide in specific problems.38 (Sommerfeld 1909, 829)

As an example of the advantage of the Minkowskian approach, Sommerfeld selected the case
of Einstein’s “famous addition theorem,” according to which velocity parallelograms do not
close. This “somewhat strange” result, Sommerfeld suggested, became “completely clear”
(völlig durchsichtig) when viewed from Minkowski’s standpoint. From our review of Minkow-
ski’s theory, we recall how he introduced a formula for frame velocity in terms of the tangent of
an imaginary angle iψ, and expressed the special Lorentz transformation in trigonometric form.
Sommerfeld borrowed the latter form of the transformation, writing ϕ instead of iψ; this sub-
stitution underlined what Sommerfeld called the “analogy” between ordinary space rotations
and space-time rotations. In analytic language, Sommerfeld added, this analogy was actually
an identity.

With this formal basis, Sommerfeld derived Einstein’s expressions for velocity composition
for the two cases corresponding to the law’s special and general form. In the special case of
parallel velocities, Sommerfeld simply applied the standard formula for addition of tangents.
By considering frame velocity in a trigonometric form, in other words, Sommerfeld showed
that velocity composition for two systems in uniform, parallel motion amounts to summing
tangents. Updating Sommerfeld’s notation a little, we can write his expression for relative
velocity:

β =
1

i
tan(ϕ1 + ϕ2) =

1

i
tanϕ1 + tanϕ2

1− tanϕ1 tanϕ2

=
β1 + β2
1 + β1β2

,

where β = v/c, and the subscripts correspond to two systems in uniform parallel motion. The
formal concision and conceptual simplicity of Sommerfeld’s derivation were widely appreci-
ated; some years later even Einstein adopted the method (Miller 1981, 281, note 4).

For the more general case of two inertial systems moving in different directions, Som-
merfeld interpreted the imaginary rotation angle ϕ as an arc of a great circle on a sphere of
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FIG 3. Sommerfeld’s spherical triangle.

imaginary radius. Here the relative velocity of an arbitrary point with respect to any two sys-
tems of reference in uniform motion is found by constructing a triangle on the surface of the
sphere, the sides of which follow from the cosine law (see Figure 3).39

Sommerfeld did not mention non-Euclidean geometry in so many words, yet the surface of a
hemisphere of imaginary radius was a well-known model of hyperbolic geometry, as mentioned
earlier. Sommerfeld’s spherical-trigonometric formulae employing an imaginary angle can be
rewritten in terms of real hyperbolic trigonometry, a fact which was unlikely to have escaped
him. In all likelihood, Sommerfeld wished to appeal to physicists’ spatial intuition, as further
witnessed by the three figures accompanying his article. Spherical trigonometry undoubtedly
represented for Sommerfeld the clearest means of presenting his ideas to physicists.

Yet the artifice of an imaginary sphere was judged excessively abstract by one of Som-
merfeld’s readers, the mathematical physicist Ludwik Silberstein (1872–1948). Silberstein
suggested that instead of an imaginary sphere, one could use the pseudosphere to study the
properties of velocity composition. Such surfaces, he noted in his textbook on relativity, were
found in many mathematical classrooms, and could render the subject accessible “even to all
those who do not like to think of hyperbolic, and other non-Euclidean, spaces.” When we
recall that Silberstein’s treatise was itself regarded by one reviewer as excessively mathemat-
ical, Sommerfeld’s neglect of a more explicit use of non-Euclidean geometry appears fully
justified.40

7 Alfred A. Robb’s optical geometry
Alfred A. Robb (1873–1936) was trained in mathematics at Cambridge, and went on in 1904
to write a dissertation on the Zeeman effect under Woldemar Voigt’s direction in Göttingen.
He published infrequently, and his work was not well known outside of Britain, yet Robb was
later considered by Joseph Larmor to have been one of the main protagonists of the theory
of relativity.41 His work on relativity is considered here for a different reason: Robb paired
the adoption of a hyperbolic-trigonometric expression for velocity with an open hostility to
Minkowski’s algebraic formalism.

Robb’s first publication on the theory of relativity was a 32-page anti-conventionalist pam-
phlet on the geometry of systems in uniform translation, the Optical Geometry of Motion.
Treating Poincaré’s view of the foundations of geometry as “the very type of a falsehood,”
Robb contended that certain optical facts and logical axioms suffice to determine the geometry
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of space (Robb 1911, 1).
In practice, Robb adopted the Einsteinian convention of measuring lengths by light signals,

and elaborated geometries of point motion in two, three, and four dimensions, all characterized
by the existence of a “standard cone,” reminiscent of Minkowski’s light hypercone. Robb also
introduced a hyperbolic function to characterize frame velocity; the inverse hyperbolic tangent
of this velocity is what Robb dubbed rapidity (Robb 1911, 9).

Robb judged his formula for the addition of rapidities to be equivalent to Einstein’s veloc-
ity addition theorem, and recognized that Sommerfeld had deduced the latter on the basis of
Minkowski’s theory. Yet it seems that Robb worked out at least one novel relation on his own:
in the most general case of several systems moving uniformly in skewed directions, he found
their velocities to compose in hyperbolic space (Robb 1911, 29–30).

No claim was made that his optical geometry differed from that of Minkowski, but the
independence of Robb’s intellectual project is manifest in his synthetic approach, the use of
hyperbolic trigonometry, and the reference to non-Euclidean geometry. While the Optical Ge-
ometry is indifferent to Minkowski’s space-time formalism, in a subsequent publication, Robb
deplored the “purely analytic character” of Minkowski’s work (Robb 1913, 5). In a formal
sense, at least, the employment of hyperbolic trigonometry in Robb’s optical geometry distin-
guished his work from that of the Minkowskians, just as it simplified his calculations, and fed
his spatial intuition.

8 Vladimir Varičak’s non-Euclidean program
Vladimir Varičak (1865–1942) was a professor of mathematics at the University of Agram
(now Zagreb, Croatia), and author of several studies of hyperbolic geometry. In Varičak’s
hands, Sommerfeld’s trigonometry on an imaginary sphere became real hyperbolic trigonom-
etry. The representation of velocity composition and of Lorentz transformations with respect
to hyperbolic space formed the basis of Varičak’s program to approach the theory of relativity
from the standpoint of non-Euclidean geometry.

More than any other mathematician, Varičak devoted himself to the development and pro-
motion of the non-Euclidean style, unfolding Minkowski’s image of velocity-vector relations in
hyperbolic space, and recapitulating a variety of results in terms of hyperbolic functions. The
use of hyperbolic trigonometry was shown by Varičak to entail significant notational advan-
tages. For example, he relayed the interpretation put forth by Herglotz and Klein of the Lorentz
transformation as a displacement in hyperbolic space, and indicated simple expressions for
proper time and the aberration of light in terms of a hyperbolic argument.42

In recognition of his accomplishment, Varičak received an invitation to report on this new
sub-branch of applied geometry to the German Society of Mathematicians at its annual meeting,
in joint session with the German Association in Karlsruhe in 1911. Other speakers on relativity
in the mathematics section included two well-known geometers: Josef Wellstein (1869–1919)
of the University of Strasbourg, and Lothar Heffter (1862–1962), the newly-named professor
of mathematics at the University of Freiburg; altogether some twenty-two mathematicians gave
talks at this meeting.43

The mathematicians were not the only ones interested in relativity, of course. In the physics
section, Sommerfeld was asked by the German Physical Society to deliver a plenary lecture on
the theory of relativity. He demurred, explaining that this could no longer be considered one
of the current objects of research; relativity had become the “secure property of physics.”44 In
the two years following Sommerfeld’s initial promotional effort (see § 5), the outlook for the
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space-time formalism had improved considerably. By the end of 1911, as mentioned above, the
space-time formalism had displaced ordinary vector calculus as the tool of choice for research
in relativity.

What Sommerfeld chose to lecture on instead of relativity was the recent work related to
Einstein’s energy quantum, including Sommerfeld’s own quantum theory. Sommerfeld consid-
ered Planck’s quantum of action to be the most promising basis for future work in this area,
not least because it has the property of Lorentz invariance. The latter property he outlined in a
special section on relativity, where he reviewed the fundamentals of the space-time formalism,
and expressed action in terms of the four-dimensional line element.45

Undoubtedly, not all those present in Karlsruhe found themselves in full agreement with
Sommerfeld’s assessment of the research prospects in relativity theory. Varičak, for example,
considered the theory of relativity to be a fertile domain for research; his own pace of publica-
tion in this domain did not let up for years. Sommerfeld and Varičak were both right in a way,
since the number of articles published annually on relativity (excluding gravitational theories,
see § 2) drops after 1911 for physicists, while for mathematicians there is no decline until the
onset of the First World War (Walter 1999, § 3).

Varičak was well aware of a difference of opinion concerning the role of non-Euclidean
geometry in relativity, as he contrasted Minkowski’s view on this question to those of Planck
and Wien. He did not claim that Planck’s and Wien’s pronouncements were ill-informed, but in
the circumstances, this would have been superfluous. Wien, for one, had silently retracted his
opinion (see § 4 above), by excising the offending passage of his 1909 lecture for reedition in
Felix Auerbach and Rudolf Rothe’s popular handbook, the Taschenbuch für Mathematiker und
Physiker. The reputation of the non-Euclidean style was well enough established for Varičak
to consider the earlier opinions of the editors of the Annalen der Physik as fully refuted.

In his review of opinion on the role of non-Euclidean geometry in relativity theory, Var-
ičak neglected to mention the view of his most powerful critic, who happened to give the
keynote address in physics that year. Two years earlier, just after Varičak’s first exposé of
the non-Euclidean style (Varičak 1910), Sommerfeld completed his signal work on the four-
dimensional vector calculus for the Annalen der Physik. In a footnote to this work, Sommerfeld
remarked that the geometrical relations he presented in terms of three real and one imaginary
coordinate could be reinterpreted in terms of non-Euclidean geometry. The latter approach,
Sommerfeld cautioned, could “hardly be recommended” (Sommerfeld 1910a, 752).

Equally omitted from Varičak’s report was his explanation of the Lorentz-FitzGerald con-
traction (according to which all moving bodies shrink in their direction of motion with respect
to the ether) as a psychological phenomenon. Earlier in the year, Einstein had contested his
argument by maintaining the reality of the contraction.46

Thus ignoring both Sommerfeld’s dim view of his non-Euclidean program, and Einstein’s
correction of his interpretation of relativity theory, Varičak went on to demonstrate the formal
simplicity afforded by hyperbolic functions in the theory of relativity. Such a remarkable fit
between geometry and physics could not be fortuitous, so Varičak stated that after writing his
first papers interpreting the formulae of relativity with non-Euclidean geometry, he changed
his orientation, by assuming phenomenal space to be not Euclidean but hyperbolic, such that
physical phenomena “pre-occur” in hyperbolic space (Varičak 1912, 105).

Varičak’s radical ontological switch mimicked that of Minkowski, who argued in his Cologne
lecture that the seat of physical reality is four-dimensional space-time, as mentioned earlier. It
was hailed by two lesser-known figures: G. B. Halsted (1853–1922), a retired mathemati-
cian from Colorado (Halsted 1912, 597), and Paul Riebesell (1883–1950), a secondary-school
teacher in Hamburg trained in mathematical physics (Riebesell 1916, 99). Others ignored Var-
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ičak’s conjecture.
The change to a non-Euclidean perspective was conservative in one sense, for with non-

Euclidean terminology, Varičak argued,

. . . the formulæ of the theory of relativity are not only essentially simplified, but it
also allows a geometric interpretation that is wholly analogous to the interpretation
of the classical theory in Euclidean geometry.47 (Varičak 1912, 105)

The non-Euclidean style, in other words, was the one most appropriate to the theory of relativ-
ity.

A similar claim had been made on behalf of the space-time formalism by Minkowski and
Sommerfeld, as we saw earlier. However, where Minkowski and Sommerfeld accompanied this
claim with a display of new physical relations, Varičak arrived empty-handed. He effectively
promoted the cause of non-Euclidean geometry in relativity by showing how to express rela-
tivistic formulae with hyperbolic functions, and yet he did not offer any new physical insights.

9 Wilson and Lewis’s vector calculus
Until 1912, the non-Euclidean style lacked a vector calculus, and thus did not represent a full-
fledged alternative to the space-time formalism. Then Edwin Bidwell Wilson (1879–1964),
J. Willard Gibbs’ last doctoral student, and a professor of mathematics at M. I. T., teamed up
with his colleague, the physical chemist Gilbert Newton Lewis (1875–1946), to fill in the gap.

As mentioned above, Lewis had already published a space-time calculus in 1910 (Lewis
1910a, 1910b). The latter work differed from Sommerfeld’s formalism in its employment
of Gibbs’s system of symbolic notation; otherwise, the calculi of both Lewis and Sommer-
feld integrated Minkowski’s imaginary temporal coordinate. Despite Einstein’s praise of his
achievement in reformulating Minkowski’s four-dimensional matrix calculus, Lewis was not
fully satisfied with the reception of his work.48 Lewis’s system proved to be less popular in
Germany than that of Sommerfeld, just as he had predicted.49

In his collaboration with Wilson, Lewis kept the same symbolic notation as before. The new
approach adopted the non-Euclidean style, by renouncing the use of an imaginary coordinate
and introducing in its place an elaborate set of calculation rules. Wilson and Lewis called
their 120-page opus “The Space-Time Manifold of Relativity: The Non-Euclidean Geometry
of Mechanics and Electromagnetics,” and published it in the Proceedings of the American
Academy of Arts and Sciences, where Lewis’s previous work had also appeared.

The new vector calculus, so the authors claimed, challenged Poincaré’s “dogmatic” asser-
tion that Euclidean geometry would forever remain the most convenient one for physics (Wil-
son & Lewis 1912, 329). The limited circulation of the Proceedings, however, precluded any
such sea-change in theoretical practice. Since Lewis’s paper had been translated for publication
in Johannes Stark’s Jahrbuch der Radioaktivität und Elektronik, the M.I.T. pair assumed Stark
would also welcome their non-Euclidean paper. However, Stark promptly declined the opportu-
nity to publish their article in German, thereby destroying whatever chance their non-Euclidean
formalism might have had to challenge the dominant position of the space-time formalism in
relativity theory.50

Wilson and Lewis used their non-Euclidean calculus to reproduce Minkowski’s fundamen-
tal equations, and offered a new derivation of known expressions for the field of an electron
in motion. However, they joined in the criticism of Minkowski’s definition of ponderomotive
force density launched by Einstein, Abraham and others (see above, §4), and described Min-
kowski’s appendix on Lorentz-covariant mechanics to be not only “hastily written,” but also
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“fundamentally erroneous.” Their target was Minkowski’s definition of rest mass density as
µ
√
1− v2, which is analogous to the formula for rest mass of a material particle; Wilson and

Lewis argued that since units of mass and length vary with a change of axes, the correct defi-
nition should be µ(1− v2) (Wilson & Lewis 1912, 495). The criticism was exaggerated, since
Minkowski’s definition leads to a correct expression for rest mass, but in making it, Wilson and
Lewis implied that their approach was more rigorous than that of Minkowski.

The collaboration of Wilson and Lewis ended with their non-Euclidean calculus, as Lewis
left M.I.T. to head the chemistry department at the University of California in Berkeley. Neither
of the two took their calculus further, but in a paper written with his student Elliot Q. Adams
(1888–1971), Lewis applied the non-Euclidean style to derive formulae of relativistic gas dy-
namics. Lewis and Adams acknowledged that equivalent relations had been obtained four
years earlier by the Breslau mathematician Ferencz Jüttner (1878–1958). While pursuing post-
doctoral study in Berlin under the patronage of Max Planck, Jüttner had derived the relativistic
modification of the Maxwell distribution law for molecules of a perfect gas. His approach re-
called Planck’s generalized dynamics, based on the Lorentz-covariant transformation of three-
dimensional momentum components, yet Jüttner claimed in a footnote that a more succinct
derivation could be obtained with hyperbolic functions pertaining to the four-dimensional space
introduced by Minkowski (Jüttner 1911, 873). Lewis and Adams verified this claim.

We have seen that after failing to place their article in a German research journal, Wilson
and Lewis abandoned their calculus. The fact that no one rushed to adopt their method reflects
the poor diffusion of their work, but this negligence may also be due in part to Wilson and
Lewis’s failure to demonstrate any practical advantage of their method over the space-time
formalism, or to produce any novel empirical or theoretical results. Others working in the
non-Euclidean style did no better, except for a Minkowskian mathematician in Paris, Émile
Borel.

10 Émile Borel’s kinematic space
A former doctoral student of Poincaré, Émile Borel (1871–1956) was renowned for his work
on the theory of functions, in which a chair was created for him at the Sorbonne in 1909 (Borel
1912). In the years following his appointment he took up the study of relativity theory, as
he said, “in the form given by the late Minkowski.”51 His investigation led to two important
insights, communicated both to the Paris Academy of Science and to the students attending his
Sorbonne lectures.

Borel’s first insight was to identify the geometry of velocity space (or “kinematic” space, in
Borel’s terminology). In kinematic space, Borel fixed the “defective” assertion that the orienta-
tion of the relative velocity of a point with respect to two inertial systems is non-commutative.
His version of velocity composition actually involves a significant modification of Einstein’s
statement of the problem, since it introduces a third inertial observer.52 With the fourth data
point provided by this observer, Borel could construct a tetrahedron in kinematic space, and
determine thereby both the direction and magnitude of relative velocity in a symmetric manner.

No sooner had Borel done this, than a physicist at the Collège de France, Paul Langevin
(1872–1946) informed him of Sommerfeld’s priority for the trigonometric demonstration of
Einstein’s velocity addition theorem, which Borel acknowledged in his communication to the
Paris Academy of Science (Borel 1913b). However, as we saw above (§5), Sommerfeld invoked
circular functions without mentioning non-Euclidean geometry; Borel’s acknowledgment of his
work prompted a claim from Varičak for the priority of his use of hyperbolic geometry in the
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study of relativistic kinematics. Borel granted this in a second note to the Paris Academy,
and observed on the same occasion that Robb, too, had preceded him in the application of
non-Euclidean geometry to relativity (Borel 1913a).

According to Borel, the advantage to be gained in considering velocity addition with re-
spect to kinematic space was partly linguistic, but above all notational. Correct use of this
notation by others, however, could not be taken for granted, and soon Borel was prompted to
take disciplinary action. Noting with pleasure the Japanese mathematician Kimosuke Ogura’s
adoption of the term “kinematic space” (Ogura 1913), Borel deplored the latter’s presentation
of the law of velocity addition in its original, non-commutative form. Apparently, Ogura had
“not seen all the advantages” of the symmetric form of the law adopted by Borel (Borel 1913a,
note 4).

During the course of his study of kinematic space Borel found something “rather curious”:
a system of reference whose accelerations are rectilinear for comoving observers may appear
to rotate with respect to inertial observers.53 To explain this unusual state of affairs, he re-
called that a vector transported parallel to itself along a closed path on the surface of a sphere
undergoes a change in orientation at the origin proportional to the enclosed area. In the pseudo-
spherical representation of kinematic space, Borel remarked, the same phenomenon occurs: if a
system’s point-velocity describes a closed path in kinematic space such that its axes remain sta-
tionary for comoving observers, the magnitude of the precession, viewed from a system whose
velocity is constant and equal to the initial (and final) velocity of the accelerating system, is
equal to the enclosed area. For a circular orbit of radius R and velocity ω, Borel estimated the
precession per orbit to be on the order of R2ω2/c2, with an approximate rate of R2ω3/c2.54 He
was careful to point out that the effect is a direct consequence of the structure of the Lorentz
transformations.55

Besides this formal argument concerning the orientation of accelerating frames, Borel also
predicted the discovery of a physical vector showing a relativistic precession. He surmised
that the latter would be detected only in the case of very rapid, periodic particle motion, and
provided the example of an orbital radius of 10−12 cm and velocity of 3× 1015 revolutions per
second, for which the precession rate is thirty revolutions per second.56 Borel pointed out that
the possibility of this physical precession opened up a new theoretical vista, since the problem
of a rotating solid in the theory of relativity could now be approached from the point of view
of the motion of its composite particles.57

Borel had discovered the kinematic basis for what is known today as Thomas precession, as
John Stachel recently pointed out (Stachel 1995, 278). However, as far as the effectiveness of
the non-Euclidean style is concerned, the discovery was of limited value, since Borel’s effect
had a most uncertain physical status.

The non-Euclidean approach Borel used to isolate his effect had to face strong competition.
The same year, two young mathematicians in Göttingen derived a precession similar to Borel’s–
but with greater precision–using the space-time formalism. Ludwig Föppl (1887–1976) and
Percy John Daniell (1889–1946) calculated an exact expression for the precession Ω of the axes
of a Born-rigid electron in uniform circular orbit, Ω = 2π(1−γ), where γ = 1/

√
1− v2/c2. It

seems they were unaware of Borel’s work, and unlike Borel, they did not ascribe any physical
significance to their result. Neither work seems to have attracted much attention, although in
one of his notebooks, Einstein graphically illustrated the precession described in an analytic
fashion by Föppl and Daniell.58



S. Walter 21

11 Diffusion of the non-Euclidean style
Although the non-Euclidean style had little to show in the way of a creative power of discovery,
it still offered a notational advantage over the space-time formalism in some cases. Widely
diffused in German journals and textbooks, exposés of the non-Euclidean style were published
in Polish, Russian and French journals of mathematics in the pre-war years.59 Hyperbolic-
functional notation was quickly adopted by mathematicians and theoretical physicists alike for
exposés of the law of velocity addition.

A poll of glosses of the velocity addition formula in the handful of relativity textbooks
published before the First World War shows that the non-Euclidean style fared about as well
as the space-time approach. Writing the first German textbook on relativity, Max Laue, then a
Privatdozent in Sommerfeld’s institute for theoretical physics in Munich, cited Varičak’s work
(in the non-Euclidean style), but preferred Sommerfeld’s imaginary-angle derivation of the
velocity addition theorem, based on Minkowski’s space-time formalism. Silberstein’s textbook
took just the opposite tack, while Cunningham’s and Weinstein’s treatises both ignored the
geometric derivations. A mixed approach was also adopted by Heinrich Liebmann, an assistant
professor of applied mathematics at Munich Polytechnic, for the second edition of his book on
non-Euclidean geometry (Liebmann 1912, §38).

The non-Euclidean style entered the historical annals precociously, thanks to the Cambridge-
trained mathematician Edmund T. Whittaker (1873-1956). In the first edition of his delightfully
anachronic history of aether and electricity, the professor of mathematics at Trinity College,
Dublin, and Royal Astronomer of Ireland recounted the still-fresh history of relativity with
the aid of hyperbolic functions, although in doing so, he did not observe any relation to non-
Euclidean geometry (Whittaker 1910, 442). The latter relation was duly noted in both the
French and German versions of the Encyklopädie der mathematischen Wissenschaften, in the
geometry and physics volumes, respectively.60 Physicists and mathematicians of the period
were thereby provided with condensed syntheses of the non-Euclidean style, which continued
to find employment in textbooks on special relativity throughout the century.

12 Concluding remarks
The first years of the twentieth century witnessed the development on several fronts of non-
Euclidean and n-dimensional geometries, subjects whose utility for mathematical research had
been established for a generation. After discovering the hyperbolic geometry of velocity vec-
tors, Minkowski had every reason to believe that his four-dimensional formalism would be
favorably met by his colleagues, who were, as he put it, “particularly well predisposed” to
develop the theory of relativity (Minkowski, “Das Relativitätsprinzip”, 1, undated typescript,
Cod. Ms. Math. Arch. 60: 3, Niedersächsische Staats- und Universitätsbibliothek, Göttingen).
His own experience had shown him that expertise in non-Euclidean and hyperspace geometries
found ready application in a geometric interpretation of the Lorentz transformation.

Up until the time of Minkowski’s space-time theory, however, non-Euclidean geometry
appeared to be irrelevant to physics, and many physicists had undoubtedly neglected to follow
the subject in its more advanced topics, notably in differential geometry, and in the study of
differential invariants. Minkowski was probably aware of the relatively rudimentary level of
mathematical skills possessed by most physicists, and may have considered that non-Euclidean
geometry would stand in the way of the acceptance by physicists of his space-time formalism.

Following the total flop of its debut, Minkowski’s formalism steadily gained terrain from
the older methods, and soon became the preferred tool of theorists in relativity. Minkowski
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himself was not fully responsible for this turn of events. After his death, mathematically-adept
physicists turned his matrix calculus into a vector and tensor analysis, which found immediate
application in electromagnetic theory, thermodynamics, gas dynamics, quantum theory, kine-
matics, rigid-body dynamics, and elasticity theory.

The emergence of the space-time formalism gave rise to the development of a competi-
tor, the chief characteristics of which we have tried to set out. While the non-Euclidean style
intrigued mathematicians, physicists still doubted that non-Euclidean geometry could play an
important role in physics. Mathematicians, however, had been sensitized to the latter possibil-
ity by Poincaré’s conventionalist philosophy, to which the non-Euclidean style issued a bold
challenge.

Physicists’ lack of interest in the non-Euclidean style had several sources. First of all, from
its inception the style met with the powerful opposition of Arnold Sommerfeld. In the second
place, no vector calculus in the non-Euclidean style was readily available to physicists. For
those few who were able to obtain a copy of Wilson and Lewis’s exposé of vector algebra in
the non-Euclidean style, rote memorization of a plethora of sign conventions was necessary
before useful work could be done. Furthermore, adapting ordinary vector algebra for use in hy-
perbolic space was just not feasible, as Varičak himself had to admit (Varičak 1924, 80). Third,
and perhaps most debilitating of all, the non-Euclidean style counted only one (unconfirmed)
physical effect to its credit by 1916. There was little incentive, in other words, for physicists to
adopt the non-Euclidean style.

On all these counts the space-time formalism enjoyed a distinct advantage. Sommerfeld
energetically promoted it, synthetic presentations of the method were on the shelf (and easily
mastered), and a string of surprising physical predictions flowed from the pens of theorists who
adopted it. In particular, we have seen how Föppl and Daniell obtained the exact result that
had escaped Borel. Their application of differential geometry to the physics of world-lines in
space-time is only one of several such investigations carried out in the heyday of Minkowskian
relativity, including Einstein and Grossmann’s generalized theory of relativity (1913). The
period from 1908 to the outbreak of the First World War was one of intense activity in relativity
theory, which saw the introduction of several rival formal techniques, some of which, like the
non-Euclidean style, had only limited success. Yet the non-Euclidean style is one example of
a general shift in focus to geometric considerations, which constitutes Minkowski’s principal
heritage in theoretical physics.
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Notes
1This subject matter corresponds to category R in the then-standard classification scheme.
2“La géométrie euclidienne est et restera la plus commode” (Poincaré 1902, 76).
3Poincaré 1897, 743; Poincaré 1907, 15; Boltzmann 1905, 329. As Jesper Lützen points out (Lützen 1995b,

69-70), Hertz himself denied any practical value to his mechanics.
4On the interactions between mechanics and differential geometry in this period, see Ziegler (1985) and Lützen

(1995a).
5Klein (1890b, 571), quoted in Hawkins (1980, 319). Jeremy Gray (1989, 155) gives an accessible account

of Klein’s projective model of elliptic geometry. David Rowe (1989) considers Klein’s promotion of a group-
theoretical approach to geometry and mechanics as one of several actions designed to adapt mathematics to the
demands of the German industrial economy.

6Stäckel 1903, 481. Similar sentiment is expressed in a variety of texts on non-Euclidean geometry, for exam-
ple, Barbarin 1902, §8 ; Liebmann 1905, §55; Wellstein 1905, §14; Bonola 1906, App. I.

7Additional selection criteria are outlined in Walter (1996, chap. 4). For further statistics on the disciplinary
structure of publications on relativity see Walter (1999, § 3).

8There are thirty non-Euclidean titles (including 7 reprints), as opposed to 117 space-time titles (with 19
reprints and 5 translations). Three articles employ both hyperbolic geometry and the space-time formalism, but
the overlap between our categories is insignificant with respect to theoretical practice, since two of the three are
review articles. In Figure 1, these three titles are represented in both categories.

9The idea of diverting to mathematics journals those submissions explaining physical phenomena in terms of
non-Euclidean geometry was entertained in 1917 by an editor of the physics journal Annalen der Physik (Jung-
nickel and McCormmach 1986, 333).

10Six years after Minkowski’s death, Arnold Sommerfeld published a document he claimed was the text of
Minkowski’s lecture (Minkowski 1915a, 1915b), but which differs substantially from the archival version. For
discussions of the discrepancies, see Galison (1979) and Walter (1999, § 2.2).

11“Es handelt sich, so kurz wie möglich ausgedrückt, genaueres werde ich alsbald ausführen, darum, dass die
Welt in Raum und Zeit in gewissem Sinne eine vierdimensionale Nicht-Euklidische Mannigfaltigkeit ist” (Min-
kowski, “Das Relativitätsprinzip”, 1, undated typescript, Cod. Ms. Math. Arch. 60: 3, Niedersächsische Staats-
und Universitätsbibliothek, Göttingen).

12“Ich will hier, was übrigens bei keinem der genannten Autoren, selbst nicht bei Poincaré, geschehen ist, jene
Symmetrie von vornherein zur Darstellung bringen, wodurch in der Tat die Form der Gleichungen wie ich meine
äusserst durchsichtig wird.” The phrase “wie ich meine” is an annotation in Minkowski’s hand. Peter Galison first
pointed out this key passage, but rendered it quite differently (Galison 1979, 104).

13“Il semble bien en effet qu’il serait possible de traduire notre physique dans le langage de la géométrie à quatre
dimensions ; tenter cette traduction ce serait se donner beaucoup de mal pour peu de profit, et je me bornerai à
citer la mécanique de Hertz où l’on voit quelque chose d’analogue” (Poincaré 1907, 15).

14“. . . so ist w1, w2, w3, w4 stets ein Punkt auf der Fläche w2
1 + w2

2 + w2
3 + w2

4 = −1 oder, wenn Sie wollen,
auf t2 −x2 − y2 − z2 = 1, und repräsentiert zugleich den vierdimensionalen Vektor vom Nullpunkt nach diesem
Punkte; und es entspricht auch der Geschwindigkeit Null, der Ruhe, ein wirklicher derartiger Vektor. Die Nich-
teuklidische Geometrie, von der ich schon unbestimmt sprach, entwickelt sich nun für diese Geschwindigkeitsvek-
toren.” Only equation (2) was numbered by Minkowski; we number equation (1) for clarity. While he referred to
equations (1) and (2) as surfaces (Flächen), marginal annotations indicate that Minkowski considered three alter-
natives: world-surface, world-mirror and cosmograph (Weltfläche, Weltspiegel, Kosmograph); see Galison (1979,
116).

15See the appendix to Helmholtz’s 1870 lecture on the origin and significance of the geometric axioms (Helm-
holtz 1884, vol. 2, 31). The model is also described in Clebsch & Lindemann (1891, 524).

16“Dem Mathematiker, der an Betrachtungen über mehrdimensionale Mannigfaltigkeiten und andererseits an
die Begriffsbildungen der sogenannten nicht-Euklidischen Geometrie gewöhnt ist, kann es keine wesentliche
Schwierigkeit bereiten, den Begriff der Zeit an die Verwendung der Lorentz-Transformationen zu adaptieren.”

17H. Minkowski to A. Hurwitz, May 5, 1908, Cod. Ms. Math. Arch. 78: 212, Niedersächsische Staats- und
Universitätsbibliothek.

18“Die dreidimensionale Geometrie wird ein Kapitel der vierdimensionalen Physik” (Minkowski 1909, 79).
19For examples, see Laue (1911, 47), or the appendix to Walter (1999).
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20Laue 1911, 88. Minkowski’s results are compared to those of Einstein by Holton (1965), Pyenson (1985,
chap. 4), Galison (1979), and Walter (1999, §2.5). For succint comparisons with the work of Poincaré, see Cuvaj
(1968) and Walter (1999, §2.2).

21Ten of the fourteen titles were written by either Minkowski or Max Born, yet of these ten, six are reprints or
translations. On responses to the Cologne lecture, see Walter (1999).

22On the development of vector and tensor methods, see Crowe (1967) and Reich (1994).
23On the influence of the theory of relativity on the mathematical sophistication of contributions to physics

journals in Germany, see Jungnickel & McCormmach (1986, 313).
24Weinstein 1913, 307, note 1. As Pyenson observes (1985, 150), Weinstein was also wary of the use of

differential equations in physics.
25“Autant que nous pouvons saisir l’exposition trop condensée de Minkowski, il nous semble qu’au fond, il

applique consciemment ou inconsciemment la géométrie non euclidienne à la physique.” Mansion 1909, 245.
26A. Einstein to Mileva Einstein-Marić, April 17, 1908, Einstein (1993b, Doc. 96). Like Einstein, Jakob Laub

(1882–1962) was a former student of Minkowski; he established the notes for Minkowski’s lectures on mechanics
in Göttingen, and participated in the electron theory seminar led by Minkowski and David Hilbert in the summer
semester of 1905. Laub then undertook an experimental investigation of cathode ray emission under Willy Wien’s
direction in Würzburg (Pyenson 1985, 220).

27Einstein & Laub 1908a. Einstein devised arguments in defense of their formula in 1910, but lost interest in
it some time later. In a letter to Walter Dällenbach in 1918, Einstein candidly remarked that it had been known
for some time that the expression he and Laub devised was false (Fölsing 1993, 276). For a succinct account of
the issues involved, and additional references, see the editorial note in Einstein’s Collected Papers (Stachel 1989,
503).

28Einstein & Laub 1908b, 532. Although the technical intricacy of Cayley matrix calculus was disputed by
Max Born (1909a, 7) and Felix Klein (1927, 75), very few theorists adopted it.

29Klein 1993b, Doc. 101; Pyenson 1985, 225.
30“Es braucht kaum hervorgehoben zu werden, daß diese neue Auffassung des Zeitbegriffs and die Abstrak-

tionsfähigkeit und an die Einbildungskraft des Physikers die allerhöchsten Anforderungen stellt. Sie übertrifft an
Kühnheit wohl alles, was bisher in der spekulativen Naturforschung, ja in der philosophischen Erkenntnistheorie
geleistet wurde; die nichteuklidische Geometrie ist Kinderspiel dagegen.”

31Heilbron 1986, 28. Planck’s flattering characterizations of Einstein’s work (he once compared Einstein to
Copernicus) also did the young man’s career a great service. Thus in 1910, a selection committee at the Germany
University in Prague cited the remarks quoted above in favor of Einstein’s appointment to the chair of theoretical
physics (Illy 1979, 76).

32After Thomas Kuhn (1962), several historians have explored the theme of revolution in relation to the recep-
tion of the special theory of relativity (Illy 1981; Pyenson 1987; I. B. Cohen 1985). In a different vein, Norton
Wise (1983) discussed the historicist movement in late nineteenth-century physics.

33“Es lässt sich nicht leugnen, dass diese veränderte Auffassung von Raum und Zeit etwas ungemein Zwingen-
des hat und dass das ganze System voll innerer Konsequenz die Überzeugung wachruft die Tatsachen müssten
sich ihm fügen. Für den Physiker kommen aber ebensowenig ästhetische Momente in Betracht wie es früher mit
teleoligischen der Fall war. Für ihn hat allein die Natur die Entscheidung zu treffen.” Wien (1909, 30). For a
different reading of Wien’s lecture see Pyenson (1985, 145).

34For details on these experiments, see Miller (1981).
35Frank 1908, 897. In March, 1909, Frank expressed the special Lorentz transformation and frame velocity

with hyperbolic functions, thus inaugurating the non-Euclidean style (Frank 1909).
36“Sommer behauptet, seine Rede in Köln sei einfach grossartig; ich kriege beim Lesen aber immer einen leisen

Gehirntatterich, nur Raum und Zeit scheinen sich zu einem grauen, elenden Chaos zusammen zu ballen.”
37Eckert & Pricha 1984; Jungnickel & McCormmach 1986, 278.
38“Der einzige Zweck dieser kleinen Mitteilung war der, zu zeigen, daß die tiefsinnige Raumzeit-Auffassung

Minkowskis nicht nur in systematischer Hinsicht den allgemeinen Aufbau der Relativtheorie erleichtert, sondern
sich auch bei speziellen Fragen als bequemer Führer bewährt.”

39For a detailed exposé of Sommerfeld’s model, see Rosenfeld (1988, 270).
40Silberstein 1914, 179; unsigned review in Nature 94, 1914, 387.
41Jahres-Verzeichnis der an den Deutschen Universitäten erscheinenen Schriften 19, 128; Larmor (1938). On

the reception of relativity in Great Britain, see Sánchez-Ron (1987); Warwick (1992).
42Herglotz 1910; Klein 1910; Varičak 1912.
43L’Enseignement mathématique 13 (1911), 514.)
44Sommerfeld 1911, 1057.
45Sommerfeld 1911, §8. For background on this paper, see Kuhn (1978, 226).
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46For analyses of the exchange, see Jammer (1979), and Miller (1981, 245). Several years later, Varičak offered
an alternative explanation of the irreality of the contraction, based on non-Euclidean geometry (Varičak 1924, 77).

47“Das Resultat meiner Untersuchung läßt sich dahin aussprechen, daß, unter Zugrundelegung der nichteuk-
lidischen Terminologie, die Formeln der Relativitätstheorie nicht nur wesentlich vereinfacht werden, sondern daß
sie auch eine geometrische Deutung zulassen, die ganz analog ist der Interpretation der klassischen Theorie in der
euklidischen Geometrie.”

48In a letter of December 19, 1910, to the Aachen physicist Johannes Stark (1874–1957), Lewis remarked
that Einstein found his system to be the “only logical solution of the 4-dimensional analysis” (Nachlass Stark,
Staatsbibliothek Preussischer Kulturbesitz, Berlin).

49G. N. Lewis to Arnold Sommerfeld, December 12, 1910, Nachlass Sommerfeld, Deutsches Museum, Munich.
50E. B. Wilson to Johannes Stark, October 11, 1912 and November 11, 1912, Nachlass Stark, Staatsbibliothek

Preussischer Kulturbesitz.
51Borel met Minkowski at the Paris Mathematician’s Congress in 1900, and they exchanged correspondence

concerning the so-called Borel-Lebesgue theorem (cf. Minkowski to Borel, December 2, 1900, Borel Papers,
Bibliothèque de l’Institut Henri Poincaré).

52Einstein’s exposé of velocity composition for two inertial systems emphasizes the lack of symmetry in the
formula for the direction of the relative velocity vector, see Einstein (1905, 905–906).

53Borel 1913b, 215, 217. In modern terms, Borel referred to a “nonrotating” accelerated system, i.e., one whose
space vectors do not rotate.

54The notation is modified for ease of comparison. Borel chose units in which the velocity of propagation of
light was unity, and noted the neglect of a factor of 2π.

55Borel elaborated this structure in his Sorbonne lectures (Borel 1914, 42–50).
56Units are converted for ease of comparison. Borel did not specify the direction of the precession, and his

example implies erroneously that it has the same direction as the orbital motion with respect to the laboratory
frame.

57Borel 1913b. A somewhat similar view was expressed by Max Born (1910, 234), in defense of his rigid-
body definition. The idea of studying rotating bodies from the standpoint of particle precession resurfaced with
D. H. Weinstein (1971), according to whom the metric of the rotating disk would be nonstatic due to Thomas
precession of the component molecules.

58Föppl and Daniell 1913, 528–529; Einstein, Scratch Notebook, p. 66, reproduced in Klein 1993a, 596.
59For references, see Varičak’s bibliography (Varičak 1924).
60Fano & Cartan 1915, 41–43; Pauli 1921, 652. Felix Klein also had a hand in the writing of Pauli’s authoritative

article; not only did Pauli thank Klein for the interest shown in his article, he claimed that the non-Euclidean
approach to the Lorentz transformations follows immediately from “well-known arguments by Klein,” when one
considers the four coordinate differentials of Minkowski space-time as homogeneous coordinates of a projective
space (Pauli 1921, 626, note 111). Klein’s interest in general relativity is discussed in David Rowe’s contribution
to the present volume. For the Pauli-Klein correspondence from this period see Hermann (1979).
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